DEPARTMENT OF DYESTUFF TECHNOLOGY

ABOUT THE DEPARTMENT

PROFESSOR G. S. SHANKARLING

B. Sc. (Hon), B. Sc (Tech), M. Sc. (Tech), Ph.D. (Tech). Professor of Dyestuff Technology Head of the Department

he Department of Dyestuff Technology was established in 1944 under the stewardship of Prof. K. Venkataraman, the then director of Institute of Chemical Technology (ICT, then known as UDCT), University of Mumbai. Under the successive leadership of highly experienced, talented and hard-working scientists and scholars the department has trained more than 1200 undergraduate students and over 550 postgraduate students. The thrust area of this department is the development of organic chemical technologies, including dyestuff and intermediates, specialty and fine chemicals, agrochemicals, perfumery and flavor chemicals and process intensification in the above fields.

The department is a unique center of learning that offers an advanced curriculum in tune with the latest industrial and academic developments. The B. Tech course in Dyestuff Technology emphasizes the process chemistry, technology and engineering of organic intermediates and colorants. In the last few academic years, the department placed all graduating students in the chemical industry in various fields such as R & D, production, marketing, etc. A large number of students secured admissions along with financial aid in reputed universities across the globe. Thanks to generous financial support from Colourtex Pvt. Ltd, the department has initiated a major renovation of the undergraduate laboratory. A strong research focus in the area of functional colorants has enabled the department to file over 20 patents in the last two years and publish over 150 papers in international journals in the past five years. Recruitment of three young faculty members in the last two years under the auspices of the UGC Faculty Recharge Programme has finally ended a severe faculty crunch the department dealt with for more than a decade. The department tries to maintain close ties with the Indian dyestuff and chemical industry by way of organizing conferences, seminar and guest lectures. These activities not only bridge the gap between industries and academia it provides undergraduate students an excellent opportunity to

interact with the industry. The Department of Dyestuff Technology organizes conferences, seminar and guest lectures' every year in order to bridge the gap between industries and the academia. The objective of arranging such co –curricular activities enhances the exposure of the dyes and dyestuff manufacturing community to undergraduate and graduate students.

Dyes Department jointly organizes the International conference- "Convention on Colorants (COC)" biannually with DMAI (Dyestuff Manufacturers Association of India). The aim of the convention is to enhance cooperation between industry and academia. In the past eight years four such conferences were organized namely COC 2011, COC 2013, COC 2015, COC 2017.

In 2016, the department has started with a new concept of having an international symposium on ionic liquids to propagate a greener aspect of the chemistry to the world. On 21st and 22nd January 2016, the department had organized the International Symposium on Ionic Liquids (ISOIL

2016) in collaboration with Reliance Industries Ltd. The focus was given on industrial applications of ionic liquids. Apart from these technical events the department has been organizing "Dyes Day" since 2013, where all dyes alumni get chance to meet and have informal and formal discussions with each other. A panel discussion is organized where dyes alumni from industry share their experiences and help undergraduates to understand the current market status of dves and chemical industries. The event ends with a cultural program where the students, faculty and alumni showcase their talent.

Along with this Department also organizes Memorial lecture series as a tribute to legends of department that includes K.V. Venkatraman lecture series, Kabbur Memorial lecture, Dr. KKG Menon lectures amongst others

VISION 2020

"To build world class programmes of excellence in education and research in specialized areas of Dyestuff, Chemistry and Technology for the benefit of society through problem solving competencies"

MISSION

The Department aspires to be one of the world's top ten colour chemistry departments by 2020. It will do so by: Providing knowledge and skill based training at the undergraduate level by designing, teaching and periodically upgrading a colour chemistry and technology syllabus in line with current and anticipated trends in industry and academia.

Pursuing world-class research in the colourants and related areas – basic textile and leather coloration, functional colourants, organic process technology and specialty chemicals.

Proactively developing and maintaining close interaction with national and international research laboratories, universities and chemical industries

PROGRAMS OFFERED:

- 1. B.Tech (Dyes)
- 2. M.Tech (Dyes)
- 3. M.Tech (Perfumery and Flavour Technology)
- 4. M.Tech (Green Technology)
- 5. Ph.D (Tech)
- 6. Ph.D (Sci)

GIST OF PUBLICATIONS AND RELEVANT DETAILS

Faculty Profile

	RA's	1	1	01	02	01	02
Students Presench Present	M.Tech.	02	1	I	I	I	I
	Ph.D	15	01	20	06	01	ı
Ph.D'S guided		11	03	20	1	1	1
xəbn1-H		19	06	22	18	60	60
xəbnI 01 i		44	03	53	23	60	07
Citations	-18	1423	78	1671	1102	424	189
Book Chapters	2013-18	01	1	04	1	1	1
Patents		05	02	08	60	ı	ı
Conference Proceedings		30	12	10	04	01	04
Publications		80	10	178	17	05	60
Industrial /PDF experience & Consultancy		8 Years of industrial experience and 29 consultancies	30 years industrial experience	24 Consultancies	6 years post doctoral experience	3 years post doctoral experience	6 year post doctoral experience
Core Faculty		Prof. G. S. Shankarling Ph.D (Tech) - UDCT	Prof. P. M. Bhate Ph.D (Tech) – Ohio State Univ.	Prof. N. Sekar Ph.D (Tech) - UDCT	Dr. S. Some Ph.D (Sci)- IITKGP	Dr. S. Saha Ph.D (Sci) IITK	Dr. N. Sadhukhan Ph.D (Sci) - IITK

FUTURE PLANS

THE DEPARTMENT IS IN THE PROCESS OF UPGRADING ITS EXISTING INFRASTRUCTURE BY RENOVATING ITS' LABORATORIES

Building Plan Outlook FRONT VIEW OF PROPOSED BUILDING

Present Status

FACULTY

PROFESSOR G. S. SHANKARLING

B. Sc. (Hon), B. Sc (Tech), M. Sc. (Tech), Ph.D. (Tech). Professor of Dyestuff Technology Head of the Department

SUBJECTS TAUGHT DURING 2017-18:

B. Tech

- DYT-1531 Chemistry and technology of speciality organic Intermediates and fine chemicals
- DYT-1601 Chemistry and technology of reactive, vat and cationic dyes
- DYT-1701 Chemistry of functional dyes
- DYT-1812 Introduction to green chemistry

M. Tech

- DYT-2001 Chemistry of functional colorants
- PFT-2001-Chemistry of perfumes and Flavours
- DYT-2802 Chemistry and technology of agro chemicals
- GTT 2104- Analysis and development of green Industrial process

RESEARCH INTERESTS:

Green Chemistry, Perfumary and Flavour Technology, Functional colorants, Supramolecular Chemistry, Metal-ion fluorescent sensor, Ultrasonics sonochemistry and Computational studies

PUBLICAITONS (PEER REVIEWED) SO FAR: 103

PATENTS: 19 CONFERENCE PROCEEDINGS/PAPERS: 71 SEMINARS/LECTURES/ ORATIONS DELIVERED: 32 PH.D.'S AWARDED AS SINGLE: 14

MASTERS AWARDED AS SINGLE: 29

H-INDEX: 19

CITATIONS: 1601

RESEARCH STUDENTS:

Ph.D. (Sci) in Chemistry-14 Ph.D. (Tech.) in Dyestuff Technology – 02 Ph.D. (Tech.) in Green Technology – 02 M. Tech in Green Technology-01 M. Tech in Perfumery - 02 **RESEARCH PUBLICATIONS FOR CURRENT YEAR:** - 24 Conference proceeding- 71 Book Chapter- 01

PATENTS:19

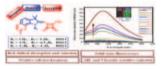
SPONSORED PROJECTS: Completed - 10 Ongoing - 06 PROFESSIONAL ACTIVITIES (MEMBERSHIP OF IMPORTANT COMMITTEES):

- i. Administrative Cocoordinator for Perfumery and Flavors Course.
- ii. Placement coordinator of Perfumery and flavors

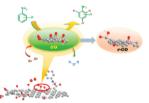
- iii. Member of Editorial board for Bombay Technologist
- iv. Member Technological Association
- v. Life member UDCT Alumni Association
- vi. Teqip Departmental coordinator
- vii. Teqip in charge of student training programme
- viii. Member, Board of governors,SVIMS
- ix. Examiner for Ph.D. Thesis in Sardar Patel University, Gujarat.
- x. Member of ICT Handbook committee.
- xi. Member of ICT Annual Report.
- xii. Member of ICT Diary student and faculty
- xiii. Member of Exam Committee
- xiv. Member of IIChE

SPECIAL AWARDS/ HONOURS / ACCOLADES TO STUDENTS:

- Mr.Mekonnen Habtemicheal was awarded first prize for the poster presentation in COC-2017.
- (ii) Mr. Pravin Borase received third prize for the poster presentation in COC-2017.
- (iii) Dr.Saurabh Deshpande


received best Thesis award of 2018.

HIGHLIGHTS OF RESEARCH WORK DONE AND IT'S IMPORTANCE:


- (iv) Functional colorants: Thermochromic and Photochromic dyes, Metal Chemosensor sensors, for anions, Studies in Supramolecular Chemistry (macromolecules), Dye Sensitized solar cell (DSSC), Non-Linear Optics (NLO) etc.
- (v) Dyes and pigments: Highperformance pigment, Synthesis of colorant dyes.
- (vi) Green chemistry: Catalytic system using enzyme for various Organic reaction, Preparation and application of ionic liquids for organic synthesis, Green chemistry and Technology

mainly development of environmentally benign organic synthesis.

(vii)Process chemistry: Ultrasonic Sonochemistry, process intensification for development of azo dyes, Studies in oxidation reactions.

Fig A. Synthesis of NIR Fluorescent IndolenineBased semisquaraine Colorants

Fig.B. Graphene Oxide Promoted Oxidative

Bromination of Anilines and Phenols in Water

In the recent years we have developed some greener protocols like synthesis of NIR fluorescent indolenine based symmetrical squaraine colorants. Also developed some environmentaly benign methodology for Graphene Oxide promoted oxidative bromintion of anilines and phenols in water, which are very helpful in dyestuff industry. Other research areas include use of Deep Eutectic Solvent as a green media for the various organic transformations. We are also working on synthesis of pigment using green media like DES as a solvent

PROFESSOR N. SEKAR

B.Sc. (Hon), B.Sc. (Tech), M.Sc. (Chemistry) Ph.D. (Tech), B. A (Music), M.A (German), M.Mus. (Indian Music) Professor of Dyestuff Technology

RESEARCH INTERESTS:

Synthesis of multistep Heterocyclic and Fused Heterocyclic compounds, Process development of intermediates, Fluorescent compounds for bio- sensors, medical diagnostics and security strong disperse dyes sensing, Laser Dyes, NIR absorbing, fluorescing and reflecting colorants, Tinctorially, Extended Styryl dyes, Metal complex dyes for photovoltaics, Greener Methods for fluorescent compounds, Synthesis and formulation of perfumes and flavors, Computational Chemistry.

PUBLICATIONS (PEER REVIEWED) SO FAR: 452 PATENTS: 07 Filed CONFERENCE PROCEEDINGS/PAPERS: 115 SEMINARS/LECTURES/ ORATIONS DELIVERED: 26 PH.D.'S AWARDED AS SINGLE: 5 MASTERS AWARDED AS

SINGLE/ CO-GUIDE: 22 H-INDEX: 24 CITATIONS: 1893

RESEARCH STUDENTS: PDF - 01 Ph.D. (Tech.) – 01

Ph.D. (Sci) -25

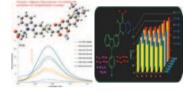
RESEARCH PUBLICATIONS:

International- 61 Peer-reviewed – 18 Conference proceeding- 21 Books- 02

PATENTS:

Indian - 07 filed

SPONSORED PROJECTS: Government- 07


SPECIAL AWARDS/ HONOURS / ACCOLADES:

1. Awareded as an outstanding research faculty and top ten knowledge producers in

India for the academic year 2017-2018

HIGHLIGHTS OF RESEARCH WORK DONE AND IT'S IMPART:

The present research activities include synthesis of multistep heterocyclic fluorescent compounds for biosensor. medicinal diagnostics and sensor for security applications. Process development of commercially important intermediates. The svnthesis involves molecular design of fused heterocyclic compounds with the features of extended Styryl system giving NIR absorption and Fluorescence. We are also working on synthesis of nanomaterials for hightech application and dyes for solar cell. Working on greener methods for heterocyclic systems, perfumes and flavors technology. Computational study for synthesized molecules.

Fig A- viscosity enduce enhancement of emission of different molecules

PROFESSOR P. M. BHATE

B.Sc. (Hons), B.Sc. (Tech.), Ph.D. Professor of Dyestuff Technology

RESEARCH INTERESTS: Carbohydrate chemistry, Colour chemistry PUBLICATIONS (PEER REVIEWED) SO FAR: 11

PATENTS: 02 Applied

CONFERENCE PROCEEDINGS/PAPERS: 09 SEMINARS/LECTURES/

ORATIONS DELIVERED: 14 PH.D.'S AWARDED AS

SINGLE: 02 MASTERS AWARDED AS

SINGLE/ CO-GUIDE: 03 H-INDEX: 4 CITATIONS: 124 RESEARCH STUDENTS: Ph.D. (Sci) -04 Ph. D.(Tech.) - 01 RESEARCH PUBLICATIONS: Peer-reviewed – 03

HIGHLIGHTS OF RESEARCH WORK DONE AND ITS IMPART:

We have gathered conclusive evidence that cellulose-dye covalent bond is formed when an aryl diazonium salt prepared from a dyestuff having a primary aromatic amino group is allowed to react with cellulose under the usual dyeing conditions. Since a primary aromatic amino group is present in an overwhelming majority of commercial azo dyes, all such azo dyes, in principle, can now become reactive dyes by application of our methodology. We have shown that ninhydrin undergoes an unprecedented reaction condensation with 2-aminobenzamide various derivatives in boiling water 11a-hydroxy-11, to afford 11a-dihydrobenzo-[e] indeno[2,1-b][1,4]diazepine-10,12-dione derivatives. These hitherto unreported products are easily isolated in high yieldby a simple filtration step.

Dyestuff Technology 1 Institute of Chemical Technology 1 9

DR. SURAJIT SOME

Ph.D. (IIT KGP) UGC-Assistant Professor of Dyestuff Technology

SUBJECTS TAUGHT DURING 2017-18:

Chemistry of Heterocycls, Use of Analytical Instruments in Synthetic Organic Chemistry, Chemistry and Technology of Benzene Intermediates-I, Mechanism of Organic Reactions, Analysis of Intermediates and Dyes and Fibers.

RESEARCH INTERESTS:

Graphene Nanotechnology, graphene quantum dot, Material Chemistry. Synthesis of graphene derivatives and their applications: Semiconductor materials, Energy storage materials, Flame retardant, waste water treatment, Bioprobes, Sensors, Anticancer materials, Surfactants, Advanced catalysts.

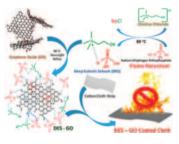
PUBLICATIONS (PEER **REVIEWED) SO FAR: 31**

PATENTS: 09 H-INDEX: 19 CITATIONS: 1230 **RESEARCH STUDENTS:** Ph.D. (Sci) -06 RA - 02 **RESEARCH PUBLICATIONS:** International- 05 PATENTS: National – 05 SPONSORED PROJECTS: Government- 04 PROFESSIONAL

ACTIVITIES (MEMBERSHIP OF IMPORTANT COMMITTEES):

American Chemical Society Member

SPECIAL AWARDS/ HONOURS / ACCOLADES:


CSIR Project sanctioned of 25.96 Lacs

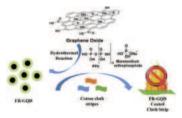
HIGHLIGHTS OF RESEARCH WORK DONE AND ITS IMPART:

a) Deep Eutectic Solvent Functionalized Graphene Composite as an Extremely High Potency Flame Retardant

ABSTRACT: We report a simple and green approach to develop the deep eutectic solvent functionalized graphene derivative as an effective flame retardant. The deep eutectic solvent functionalized graphene oxide (DESGO) was synthesized by introducing nitrogen-supported phosphorus functional groups on the surface of graphene derivative via a deep eutectic solvent, which is prepared by the treatment of monosodium dihydrogen orthophosphate and choline chloride. Subsequently, the resultant DESGO material is characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy,

thermogravimetric analysis, and scanning electron microscopy. The as prepared DESGO solution coated cloth piece was sustaining its initial shape and size by releasing a little amount of smoke at the early stage without catching fire for more than 540 s (9 min), whereas the pristine cloth is totally burned out within 10 s, leaving small amounts of black mass. This simple method of directly functionalized deep eutectic solvent on a graphene oxide surface can be a common process for the cost-effective bulk production of a nano carbon template for extremely high potency, nontoxic flame retardant applications.

Scheme 1. Synthesis of Highly Efficient Flame Retardant (DESGO).


b) Novel approach towards the synthesis of carbon-based transparent highly potent flame retardant

ABSTRACT: In this article, a novel and facile method is proposed to synthesize a highly

effective carbon-based water dispersible flame retardant. This is the first report of carbonbased highly potent transparent flame retardant, which keeps the colour of the cloth intact. A functionalized flame retardant graphene quantum dots (FR-GQD) as a carbonbased material was synthesized using graphene oxide and phosphorous source through a hydrothermal treatment. As prepared transparent FR-GQD solution coated cotton cloth was found to maintain cloth's original colour. In a flame test, FR-GOD coated cloth emitted little smoke initially and after

that, it failed to catch fire for more than 300 s and maintained its initial shape. Whereas the control cloth caught fire and burnt completely within 15 s. Flame retardant efficiency of the FR-GOD coated cloth was confirmed by detail flame tests such as limiting oxygen index (LOI), exposure to high heat flux (~50 kW/cm2) and turbulent premixed flame at high temperature (~1400 °C). The strength of FR-GQD coated cloth was determined using tensile strength test. This technique of synthesis and application of this water dispersed FR material may find

a general approach towards the practical and eco-friendly application of non-toxic FR-GQD as transparent flame retardant.

Scheme 2. Synthesis of the graphene supported highly potent transparent flame retardant.

DR. SATYAJIT SAHA

Ph.D. (IITK) UGC-Assistant Professor of Dyestuff Technology

SUBJECTS TAUGHT DURING 2017-18:

- Azo colorants
- Chemistry and Technology
 of Pigments
- Preparation and Analysis of Dyes, Intermediates, Optical Brighteners, Functional colorants
- Analysis of Inorganic Raw Materials used in Dyestuff Industry
- Introduction to Green Chemistry-Elective

RESEARCH INTERESTS:

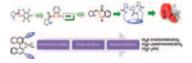
Asymmetric Organocatalysis, Mechanistic Organic Chemistry, Green Chemistry, DSSC, Functional Organic molecules PUBLICATIONS (PEER REVIEWED) SO FAR: 15

PATENTS: Nil

CONFERENCE PROCEEDINGS/PAPERS: 03 SEMINARS/LECTURES/

ORATIONS DELIVERED: 02 PH.D.'S AWARDED AS SINGLE: Nil

MASTERS AWARDED AS SINGLE/ CO-GUIDE: Nil

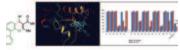

H-INDEX: 9 CITATIONS: 514 RESEARCH STUDENTS: Ph.D. (Sci) - 02

PDF - 01

SPONSORED PROJECTS: Government: 3 Private: Nil HIGHLIGHTS OF RESEARCH WORK DONE AND ITS IMPART:

1. Highlights of research work done and it's impart:

The central theme of my research activities is synthetic organic chemistry, green chemistry, with a special focus on the design and development of novel catalysts and their application towards stereoselective synthesis both for the control of relative and absolute configuration as well as designing functional organic molecules for applications OLED's etc. The in DSSC. construction of complex molecular architectures, especially those with multiple stereogenic carbon atoms from simple chemicals, continues to be a resourceful effort in both academic and industrial domains. The challenge is intensified further when need to perform the reactions in an atom economical and non-hazardous way. Our research is aimed at designing novel catalysts (both organo- and metal based) with diverse chemical motifs which may have roles not only in catalytic activation but also in the orchestration or organization of the reacting components via supra molecular interactions. Structurally and functionally multifaceted organocatalysts may find new roles in organized catalysis for deeper access into chemical reaction space. Here the below scheme depicts the rational modification of catalysts structures and the hunt is on for a better catalyst.



Another aspect of our research is the application of solid supported catalysts in various organic transformations in a greener and cleaner way. The solid supported catalysts

received have considerable importance in organic synthesis because of their ease of handling, enhanced reaction rates, greater selectivity, simple workup, low-cost, and recoverability and recyclability of catalysts. This catalyst can act as ecofriendly for a variety of organic transformations, non-volatile, recyclable, non-explosive, easy to handle, and thermally robust.

In pursuit of developing efficient organocatalytic strategies for the synthesis of novel heterocyclic compounds we have synthesized 4H-Chromens functionalized using cheap Brønsted acid catalyst under very ambient condition. The synthesized compounds were submitted to an in silico ADMET screening, to analyse their overall drug and toxicity risks. score Molecular docking studies were performed to understand the possible ligand-receptor intermolecular interactions as well as screened for their in vitro antibacterial activity.

Another facet of our research interest is design and synthesis of organic materials for Dye

Sensitized Solar Cell (DSSC). Incessant growth of human population and improved living standards has resulted in a steep rise in world's energy consumption. Therefore, there is a rapid depletion of earth's fuel resources. This has directed the global scientific community to explore renewable energy resources, realizing solar energy as a much cheaper and efficient alternative. Organic Dyesensitized solar cells (DSSCs) are identified as one such efficient converter of solar energy to electricity and are recognized as a novel substitution of the conventional silicon based solar cells due to its low-cost material, ease of fabrication and reasonably good power conversion efficiency. Although the scientific community has evidenced a quantum jump in the research related to organic DSSC in recent years, the cell efficiency and performance are still not at par with the metal complex based DSSC. It demands a more comprehensive understanding on the structureproperty relation of the organic radiation dves wrt solar absorption. Therefore, there is a relentless effort in finetuning the chemical structures of donors and acceptors of the dye molecules for improving efficiency and cell performance.

DR. NABANITA SADHUKHAN

B. Sc. (Chem. Hon), M. Sc. (Inorg. Chem), Ph.D. (IITK, Chemistry), Post-doc (Japan) DST Young Scientist (2014), CSIR-Pool Scientist (2014 – 2016) at CLRI Assistant Professor of Dyestuff Technology (2016 – present)

SUBJECTS TAUGHT:

B. Tech

- DYT-1203 Fluorescent colorant
- DYT-1102 Technology of Intermediate II
- DYT-1102 Technology of Intermediate II
- DYT-1203 Chemistry of Functional colorant
- DYP-1002 Chromatography Techniques

RESEARCH INTERESTS:

- Stimuli responsive biologically important functional molecules
- Functional colorants for biological application,
- Fluorescent dyes for cosmetic application,
- Monodisperse polymer,
- Stimuli responsive controlled release of fragrance from organic gel

PUBLICATIONS (PEER REVIEWED) SO FAR: 17

CONFERENCE PROCEEDINGS/PAPERS: 2

SEMINARS/LECTURES/ ORATIONS DELIVERED: 6

MASTERS AWARDED AS SINGLE: 2

H-INDEX: 08 CITATIONS: 230 (Google scholar)

NUMBER OF SPONSORED PROJECTS:

- 1) Government projects (ongoing)- 3 (CSIR = 1, DST-SERB = 1, TEQIPIII = 1)
- 2) Government projects (Completed) – 1 (UGC)

PROFESSIONAL ACTIVITIES (MEMBERSHIP OF IMPORTANT COMMITTEES):

Member of American Chemical Society

RESEARCH STUDENTS:

- Ph.D. (Sci) in Chemistry -1
- Project Assistant 1
- Junior Research Fellow 1

HIGHLIGHTS OF RESEARCH WORK DONE AND IT'S IMPORTANCE:

- Stimuli responsive biologically important functional colorants for biological application: We are working on bioinspired 'Molecular glue'. The synthesis, characterization and potential antitumor/ anticancer applications are our research interest.
- Fluorescent dyes for

cosmeticapplication:Synthesis,characterizationandapplicationoffluorescent dyes for cosmeticapplication.

- Monodisperse polymer: Biological properties of monodisperse Polyethylene oxide(PEO) defers compared to polydisperse analogue. have Now. we started working on an eco-friendly process modification for the synthesis of polyethylene oxide towards monodispersisty and process intensification upscale production for following green technology protocol. Such processes will be highly useful for large scale production of molecular high weight monodisperse PEO by pharma-industry.
- Stimuli responsive controlled release of fragrance from organic gel: Synthesis and characterization of photo and thermo dual responsive organic gels that can entrap fragrance molecules. Controlled release of fragrances from the gel is under study.
- Organometallic and inorganic coordination chemistry for functional

application: Design of solvent dyes based ligands, which can occupy two or more metal centers together

towards organometallic / bimetallic complexation, and their application in biologically relevant catalysis., LEDs involving multi-metal core.

SUPPORT STAFF

Mr. H. R. Fegade (Instrument Mechanic)

Mr. S. B. Magdum (Lab Assistant)

Mr. S. B. Sonawane (Senior Lab Assistant)

Mr. Y. S. Chandiwade (Lab Attendant)

Mr. A. M. Patil (Lab Assistant)

Mr. P. B. Rana (Lab Attendant)

Mr. A. R. Rawool (Lab Assistant)

UNDERGRADUATE STUDENTS' SEMINARS/PROJECTS/HOME PAPERS:

Sr. No.	Name	Seminar Topic
1	Mr. Sairam Malekar	Natural Dyes for tumour detection
2	Mr. Pankaj Kumar	Cross conjugated chromophores
3	Ms. Minhaj Hannure	Vacuum systems in chemical plant
4	Mr. Manish Jain	Carbon supported material for dye degradation Color formers
5	Ms. Saily Bhagwat	Retinoids Dyes for smart fabric in defence applications
6	Ms. Abha Valavalkar	Packing for distillation column
7	Mr. Sudesh Tandlekar	Size reduction equipments used in chemical plant
8	Mr. Sourabh Patil	Croconium colorants Functional applications of azo colorants
9	Mr. Dhruv Sureka	Ionophores
10	Mr. Viraj Shinde	Conducting paints
11	Mr. Riddhesh Dani	Solar pigments
12	Ms. Aishwarya Gurav	Filtration media used in dye industries
13	Mr. Parth Parekh	Liquid level measuring equipments
14	Ms. Nupur Damke	Organometallic dyes for display applications
15	Ms. Nikita Gulgule	Green chemistry in Nitration

POST GRADUATE STUDENTS' SEMINARS

No.	Name of the Student	Торіс
	(Beginning with Last name)	
1	Chaudhari Sushil	Acid and base catalyzed reaction of Glycerol
2	Kamble Vidula	Life cycle assessment of solvent waste in perfumery industry
3	Bharose Manjusha	Silicones in enviornment

RESEARCH PROJECTS

PH.D. (TECH)

Sr. No.	Research Scholar (Beginning with Last name)	Previous Institution	Project	Supervisor
1.	More Priyanka	Institute of Chemical technology, Mumbai.	Utilization of biocatalyst in organic synthesis	Prof. G.S. Shankarling
2	Joglekar Amruta	Institute of Chemical technology, Mumbai	Development and characterization of specialty colorants using conventional and environmentally benign	Prof. G.S. Shankarling
			methods	

3	Patil Yogesh	Institute of	Dye degradation using metal	Prof.
		Technology,Nirma	organic framework	G.S.Shankarling
		University,		
		Ahmedabad		
4	Chaturvedi Ankur	Institute of Chemical	Characterization of Ionic	Prof. G. S.
		Technology	Liquids	Shankarling
5	Mande Prashant	Institute of Chemical	To be Decided	Prof. N. Sekar
		Technology		
6	Pratik Hande	Institute of Chemical	Novel Reactive Dye System	Guide- Prof. S.
		Technology, Mumbai	Based on Diazonium Salts	S. Bhagwat Co
				Guide- Prof. P. M.
				Bhate

PH.D. (SCIENCE)

Sr. No.	Research Scholar (Beginning with Last name)	Previous Institution	Project	Supervisor
1	Moolya Preetam	RPG Life Sciences	Synthesis of High performance colorants	Prof. G. S. Shankarling
2	Vajekar Shailesh	Ruparel College, Mumbai	Study and synthesis of novel colorant for High-tech application	Prof. G. S. Shankarling
3	Boraste Deepak	Acoris Research Ltd. Pune	Studies in synthesis and application of pyromethene derivative and cucurbitol host molecules	Prof. G.S. Shankarling
4	Ghorpade Prashant	VMV College, Amravati	Synthesis of novel deep eutectics and study of deep eutectics mixtures for catalytic action in organic synthesis	Prof. G.S. Shankarling
5	Gayakwad Eknath	Vidyabharti College Amaravati	Green methodologies for synthesis of novel heterocyclic colorants.	Prof. G.S. Shankarling
6	Kamble Sujit	Evotec India Ltd., India	Green approach in synthesis of heterocyclic compounds and synthesis of novel colorants.	Prof. G.S. Shankarling
7	Pant Preeti	V, G. Vaze College, Mumbai.	Synthesis of colourants for functional applications and implementation of green principles in organic reactions.	Prof. G.S. Shankarling

8	Rathi Jyoti	Vidyabharti College Amaravati	Implementation of Chiral Deep Eutectic solvent for selective organic synthesis.	Prof. G.S. Shankarling
9	Khopkar Sushil	University department Chemistry, Mumbai.	Synthesis, photophysical properties and application of novel squaraines	Prof. G.S. Shankarling
10	Jachak Mahesh	Centaur Pharmaceuticals Pvt. Ltd	Synthesis of novel colorants for metal sensor applications and ink jet ink formulations.	Prof. G.S. Shankarling
11.	Patel Khushbu	University department Chemistry, Mumbai.	Synthesis of grapheme oxide and its functionalized derivatives as an promising catalysts for organic transformations	Prof. G.S. Shankarling
12	Mehta Viral	Mithibai College, Mumbai	To be decided	Prof. G.S. Shankarling
13	Rupali Bhise	SRTMU Nanded	Deep Eutectic Solvent as a green media for oxidation reaction (TEQIP)	Prof. G. S. Shankarling
14	Jadhav Manoj	KET's V. G. Vaze College. Mulund, Mumbai.	Synthesis of Novel Colorants for Dyes Sensitized Solar Cells	Prof. N. Sekar
15	Ghorpade Seema	Shivaji University Kolhapur	Synthesis high performance fluorescent colorants and their biological applications	Prof. N. Sekar
16	Mallah Ramnath	Birala College Kalyan	Synthesis of Highly Fluorescent Fused Heterocyclic Compounds	Prof. N. Sekar
17	Erande Yogesh	S.S.G.M. College, Kopargon	Greener Methods for Synthesis of Heterocyclic Compounds	Prof. N. Sekar
18	Archana Bhagwat	New Arts, Science and Commerce College Ahmednagar	Synthesis and Photophysical Properties of Polycyclic Fluorescent Compounds	Prof. N. Sekar
19	Kiran Ahavad	Ahmednagar College, Ahmednagar	Synthesis and Applications of Heterocyclic Fluorescent ESIPT Fluorophore	Prof. N. Sekar
20	Dhanraj Mobiya	Department of Chemistry, Mumbai University	Synthesis of novel fluorescent dyes and their applications	Prof. N. Sekar

21	Manali	M .S. University,	Synthesis of High performance	Prof. N. Sekar
	Rajashirake	Badoda	Fluoresecnt colourants for	
			functional applications	
22	Mayuri Kadam	Department	Synthesis of novel fused	Prof. N. Sekar
		of Chemistry,	heterocyclic fluorescent	
		Mumbai	compounds and their	
		University	applications	
23	Prerana Lokhande	Department of	Synthesis of novel fluorescent	Prof. N. Sekar
		Chemistry, ICT,	colorants	
		Mumbai		
24	Dinesh Patil	North	Synthesis of Novel fluorescent	Prof. N. Sekar
		Maharashtra	fused heterocyclic colorant	
		University,	systems	
		Jalgaon.		
25	Sulochana	Ahmednagar	Synthesis of fluorescent	Prof. N. Sekar
	Bhalekar	college,	colourants	
		Ahmednagar		
26	Manish Raikwar	The D.G. Ruparel	Synthesis of highly fluorescent	Prof. N. Sekar
		College	heterocyclic compounds	
27	Suvidha Shinde	Department	Application of fluorescent dyes	Prof. N.
		of Textiles and	on textile and leather substrate	Sekar&Prof. R.V.
		fibre processing		Adivarekar(Co-
		and technology		guide)
		department, ICT,		
		Mumbai		
28	Mishra Virendra	University Of	Synthesis of Fluorescent reactive	Prof. N. Sekar
		Mumbai. Kalina.	dyes & their intermediates	
29	Nitesh N Ayare	ICT Mumbai.	Synthesis of fluorescent dyes	Prof. N. Sekar
			with high performance.	
30	Yadav Sagar B.S.	University of	Synthesis of Heterocyclic	Prof.N.Sekar
		Mumbai, Kalina.	Dyes with High performance	
			Fluorescence.	
31	Ramugade	ICT, Mumbai.	Synthesis and application of	Prof. N. Sekar
	Supriya H.		photostable dyes on textiles	& Prof. R.V.
				Adivarekar (Co-
				guide)
32	Ghanavatkar	Gogate Jogalekar	Synthesis of photostable and	Prof.N.Sekar
	Chaitannya	college Ratnagiri	Fluorescent reactive dyes & their	
	Waman		intermediates	

	33	Sharma	The Institute of	To be decided	Prof.N.Sekar	
		Suryapratap	Science , Mumbai			
	34	Zahir ali siddiqui	University of delhi	Design, synthesis and properties	Guide-	
				of dimeric acenes and their	Prof.N.Sekar	
				application for	Co-Guide	
					Dr.Sandeep more	
	35	Zeba Khan	Jai hind college	Not yet decided	Prof. N.Sekar	
			university of			
			mumbai			
	36	Vandana kumari	University of pune	Not yet decided	Prof.N.Sekar	
		Shukla				
	37	Sumeet Sonvane	Dr.Babasaheb	Not yet decided	Prof.N.Sekar	
			Ambedkar			
			Marathwada			
			University,			
			Aurangabad			
	38	Puja Omprakash	K.J. Somaiya	Greener ways of production of	Prof.N.Sekar	
		Gupta	college of science	High Performance Colorants		
			and commerce	 xanthenes and quinonoids 		
			Mumbai	(TEQIP)		
			University			
	39	Nazim Ahmad	Shri Shivaji	Multicomponent approach	Prof. P. M. Bhate	
		Abdul Aleem	College of Arts,	for the synthesis of some		
			Commerce &	heterocyclic systems		
			Science College,			
	40	0 1 4 1 1	Akola			
	40	Garande Ashok	Ahmednagar	Attempts at structural	Prof. P. M. Bhate	
		Malappa	College,	elucidation of Cherimoline and		
			Ahmednagar	synthesis of quinazoline and		
	41	Dugana Daianam	Denantmaant	quinoxaline based heterocycles.	Duct D.M. Phate	
	41	Dugane Rajaram	Department of Chemistry,	Studies in Chiral synthesis	Prof. P. M. Bhate	
		Gangaram	Dr.Babasaheb			
			Ambedkar			
			Marathawada			
			Univrsity,			
	42	Rajkumari Vijilata	Aurngabad Ahmednagar	Development of a novel	Prof. P. M. Bhate	
	12	Devi	College,	reactive dye system based on	1 IOI. I. WI. Dilate	
			Ahmednagar.	diazonium salts and synthesis of		
			rinneanagai.	quinoxalines, quinazolines and		
				benzodiazepines		
l				benzoulazepines		

42	D (() A 1		1100	D C ''' C
43	Dattatray Appasha	Dr. B.A.M.U.	UGC	Dr. Surajit Some
	Pethsangave	Aurangabad		
44	Rahul Vijay Khose	Wilson college	BRNS-DAE	Dr. Surajit Some
		Mumbai		
45	Pravin Wadekar	Institute of	DST-SERB	Dr. Surajit Some
		science Mumbai		
46	Pratik Dhumal	Dr. B.A.M.U.	ONGC	Dr. Surajit Some
		Aurangabad		
47	Mahesh Bondarde	University of Pune	ONGC	Dr. Surajit Some
48	Madhuri Bhakare	Dr. B.A.M.U.	Green approach towards the	Dr. Surajit Some
		Aurangabad	synthesis of conductive paint	
			from biomass. (TEQIP)	
49	Jejurkar Valmik	University of Pune	Design and Synthesis of Novel	Dr. Satyajit Saha
	Pandurang		Organic Dyes Based on Trogers's	
	-		Base (TB) Architecture for	
			Efficient Dye Sensitized Solar	
			Cells (DSSC), DST-SERB	
50	Gauravi	University of	Process intensification	Dr. Satyajit Saha
	Yashwantrao	Mumbai	by continuous-flow	
			production of 2-aryl-1,2,3,4-	
			tetrahydroquinoxaline	
			derivatives in high optical	
			purity mediated by immobilized	
			organocatalyst (TEQIP)	
51	Tanvi Phoolchand	Jai Hind College,	"An eco – friendly process	Dr. Nabanita
	Gupta	Mumbai	modification for the synthesis	Sadhukhan
	_		of polyethylene oxide towards	
			monodispersity and process	
			intensification for upscale	
			production following Green	
			Technology protocol" (TEQIP)	

M. TECH.

Sr. No.	Research Scholar (Beginning with Last name)	Previous Institution	Project	Supervisor
1	Chaudhari Sushil M.Tech Perfumery	Government college of pharmacy, Amravati.	Synthesis of fragrance and flavor ingredients using DES and Ionic liquids	Prof. G.S. Shankarling
2	Kamble Vidula M.Tech Perfumery	Sharad pawar collage of food technology	Synthesis of Jasmine odorants through green routes	Prof. G.S. Shankarling

N	M.Tech Green ech	Department of chemical technology, Dr. BAMU Aurangabd	Synthesis of basic Ionic liquid: A useful reaction solvent and/or catalysis	Prof. G.S. Shankarling
---	---------------------	---	---	---------------------------

POSTDOCTORAL STUDENTS

No.	Research Scholar(Beginning with Last name)	Previous Institution	Project	Supervisor
1	Dr. Dipti Lakhe	IIT BOMBAY	Synthesis of novel fluorescent cyanine dyes for High technology application	Prof.N.Sekar
2	Dr.Kshatriya Rajpratap	University of Pune	A Novel Approach Of Rational Catalyst Design For The Direct Enantioselective α-Allylation/Alkylation Of Ketones	Dr. Satyajit Saha

DETAILS OF SPONSORED PROJECTS GOVERNMENT AGENCIES:

Sponsor	Title	Duration	Total amount (Rs.)	Principal Investigator	Research Fellows
AICTE- RPS	Synthesis of novel perimidine and quinaldine based NIR absorbing squaraines dyes and study of their thermal and photophysical properties	Three Years	750000/-	Prof. G.S. Shankarling	Sushil Khopkar
DAE- BRNS	Development and characterization of selective coating for enhancement of radiation absorption of solar receivers.	Two Years	1, 43, 35,000/-	Prof. G.S. Shankarling/ Dr. V. D. Deshpande	Amruta Joglekar
DAE- BRNS	Synthesis and Purification of Spectroscopic grade Cucurbituril[7] for high power aqueous dye laser applications	Three Years	30,44,800 /-	Prof. G.S. Shankarling	Deepak Boraste

Principal Scientific Advisor to GOI PSA –II (DST)	Development & Optimization Studies with an alternate route for vinylsulphones and Novel vinylsulphones	3 year	Rs.59,13,000	Prof. N. Sekar	Mr.Virendra R. Mishra Mr. Chaitanya W. Ghanvatkar
WRA	Synthesis of water soluble fluorescent colourents for high visible hydrophilic textile substrates	3 years	59,40,856	Prof. N. Sekar Smita Honade Bait	Zeba Khan
DST -CERI	Coloured fluorescent conducting oligomers / monomers for dye sensitized solar cell	3 Year	88,78,099	Prof. N. Sekar	Ms.Vandana Shukla
DST- SERB	Phenonthroline-ly Coupled Tetracene Dimers (PCTD)-Novel Materials for Organic Electronics	3 Year	37,58,480	Guide-Prof. N. Sekar Co-Guide Sandeep more	Zahir Siddhique
DAE- ICT	high-performance laser dyes design and synthesis	3 years	34,82,500	Prof.N.Sekar	Sumeet Sonvane
TEQIP -III	Geener way of production of High performance colorants- Xanthenes and Quinonoids	2 Year	5,20,000	Prof.N.Sekar	Puja Omprakash Gupta
DST	Designing and synthesis of novel fluorescent cyanine dyes for Hi-technology application	3 Year	30, 00,000	Prof. N. Sekar	Ms. Dipti Lakhe Chawade (Post-Doctorate Research Fellow)
Ministry of Textiles	Novel Reactive Dye System Based on Diazonium Salts	3 years	Rs 27.84 lacs	Prof Prakash Bhate	Pratik Hande
UGC	Graphene supported chiral reagent	3years	6 Lacs	Dr. Surajit Some	Dattatray Appasha Pethsangave
BRNS	Tunable laser properties of dye decorated graphene derivatives	3 years	27.78 Lacs	Dr. Surajit Some	Rahul khose

DST- SERB	Synthesis of 3D, fixable heteroatom doped carbon based metal oxide containing nanocomposites for its high-performance supercapacitor application	3 years	25.81 Lacs	Dr. Surajit Some	Rini Jain
CSIR	Synthesis of Graphene Based Bioadsorbent for west stream treatment	3 years	29.26 Lacs	Dr. Surajit Some	Dnyaneshwar K.Kulal (Reasearch Associative)
ONGC	Development of Graphene based supercapacitor employing improved protocols for preparation of graphene	15 Month	14,70,000	Dr. Surajit Some	Pravin H.Wadekar
ONGC	Development spongy Graphene Materials for Recovery of crude oil from Effluent water	15 Month	14,59000	Dr. Surajit Some	1.Pratik Dhumal 2.Mahesh Bondarde
SERB- DST	Design and Synthesis of Novel Organic Dyes Based on Trogers's Base (TB) Architecture for Efficient Dye Sensitized Solar Cells (DSSC)	3 years (2015- 2018)	Rs. 29,99,000	Dr. Satyajit Saha	Valmik Jejurkar Pandurang
CSIR	A Novel Approach Of Rational Catalyst Design For The Direct Enantioselective α-Allylation/Alkylation Of Ketones	3 years (2016- 2019)	Rs. 25 46,000	Dr. Satyajit Saha	Dr. Rajpratap Kshatriya
UGC	Co-operative Organocatalysts for Enantioselective Transformations	2 years (2015- 2017)	Rs. 6,00,000	Dr. Satyajit Saha	-
CSIR	Novel approach to make tailored design molecular glue from bioinspired dye molecule: evaluation of properties and potential anticancer applications	3 years (2018- 2021)	Rs. 12,98,667	Dr. Nabanita Sadhukhan	Criss Dcosta

UGC	Synthesis and application of novel water soluble organic and inorganic small molecules for bio- mimicking applications	2 years, 2016 - 2018	6 lac	Dr. Nabanita Sadhukhan	-
DST – SERB	Synthesis and characterization of amphiphilic PEG foldamer for mimicking stimuli-responsive ion pump	3 years, 2015 - 2018	20.3 lac	Dr. Nabanita Sadhukhan	Chinmay Thakkar

PRIVATE AGENCIES /INDUSTRIES:

Sponsor	Title	Duration	Total amount	Principal Investigator	Research Fellows
Transition Optical Corporation,USA	Synthesis of Azo and anthraquinone dyes.	One year	20,00,000 /-	Prof.G.S. Shankarling	Rishikant Sonune
Essilor International Ltd.	Development of IPP resistant Blue dye and UV-absorber	One year	26,00000/-	Prof.G.S. Shankarling	Dr. Haribhau Kumbhar
Deepak Nitrite Ltd	Synthesis of optical brightening agents	One year	9,50,000 /-	Prof.G.S. Shankarling	Mr. Anand Parashar

DETAILS OF NATIONAL AND INTERNATIONAL COLLABORATIONS: Prof. G.S. Shankarling

- Dr. Douglas McFarlane and Dr. Vijay Raghvan, Monatsche University, Australia.
- Dr. Suban Sahoo, SVNIT, Gujarat.
- Dr. Hirendra Gosh, BARC, Mumbai.
- Dr. Alok Ray, BARC, Mumbai.
- Dr. Shakti Vinay Shukla, Principle Director, Fragrance and Flavor Development Center (FFDC), Kannuaj, U.P

PUBLICATIONS (PEER REVIEWED):						
No.	Title and authors	Journal	Vol. No.	Pages	Year	
1	Greener Protocol for the Synthesis of NIR Fluorescent Indolenine-Based Symmetrical Squaraine Colorants Khopkar, S., Deshpande, S., Shankarling,	ACS Sustainable Chemistry and Engineering	6(8)	10798-10805	2018	
	G.					
2	Graphene Oxide Promoted Oxidative Bromination of Anilines and Phenols in Water Ghorpade, P.V., Pethsangave, D.A., Some, S., Shankarling, G.S.	Journal of Organic Chemistry	83(14)	7388-7397	2018	
3	Application of Fe3 O4 @Silica Sulfuric Acid as a Magnetic Nanocatalyst for the Synthesis of Rhodamine Derivatives Vajekar, S.N., Shankarling, G.S.	Chemistry Select	3(21)	5848-5852	2018	
4	Ru(Cl)-Salen Complex: Solvent Selective Homogeneous Catalyst for One-Pot Synthesis of Nitriles and Amides Borase, P.N., Thale, P.B., Shankarling, G.S.	Chemistry Select	3(20)	5660-5666	2018	
5	Choline Hydroxide Promoted Synthesis of N-Aryl Anthraquinone Derivatives: Metal Free Approach to Ullmann Coupling Reactions Pant, P.L., Sonune, R.K., Shankarling,	Chemistry Select	3(19)	5249-5253	2018	
	G.S.					
6	Supramolecular host-guest interaction of antibiotic drug ciprofloxacin with cucurbit[7]uril macrocycle: Modulations in photophysical properties and enhanced photostability	Journal of Photochemistry and Photobiology A: Chemistry	358	26-37	2018	
	Boraste, D.R., Chakraborty, G., Ray, A.K., Shankarling, G.S., Pal, H.					

	Γ				
7	A simple substituted spiropyran acting as a photo reversible switch for the detection of lead (Pb2+) ions	Sensors and Actuators, B: Chemical	258	648-656	2018
	Deshpande, S.S., Jachak, M.A., Khopkar, S.S., Shankarling, G.S.				
8	A Unique Blend of Water, DES and Ultrasound for One-Pot Knorr Pyrazole Synthesis and Knoevenagel-Michael Addition Reaction	Chemistry Select	3(7)	2032-2036	2018
9	Kamble, S.S., Shankarling, G.S. Recent advances in synthetic methodologies for transition metal-free Ullmann condensation reactions Pant, P.L., Shankarling, G.S.	New Journal of Chemistry	42(16)	13212-13224	2018
10	A thiazoloquinoxaline based "turn-on" chemodosimeter for detection of copper ions Deshpande, S.S., Khopkar, S.S., Shankarling, G.S	Dyes and Pigments	147	393-399	2017
11	Metal-free oxidation of aldehydes to acids using the 4Na2SO4•2H2O2•NaCl adduct Gayakwad, E.M., Patil, V.V., Shankarling, G.S.	Environmental Chemistry Letters	15(3)	459-465	2017
12	Process intensification in azo dyes Shankarling, G.S., Deshmukh, P.P., Joglekar, A.R	Journal of Environmental Chemical Engineering	5(4)	3302-3308	2017
13	Deep Eutectic Solvent/Lipase: Two Environmentally Benign and Recyclable Media for Efficient Synthesis of N-Aryl Amines	Catalysis Letters	147(6)	1371-1378	2017
14	Pant, P.L., Shankarling, G.S. Reversible 'turn off' fluorescence response of Cu2+ions towards 2-pyridyl quinoline based chemosensor with visible colour change More, P.A., Shankarling, G.S.	Sensors and Actuators, B: Chemical	241	552-559	2017

			1	1	
15	Solvatochromic fluorescence properties of phenothiazine-based dyes involving thiazolo[4,5-b]quinoxaline and benzo[e] indole as strong acceptors Deshpande, S.S., Kumbhar, H.S., Shankarling, G.S.	Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy	174	154-163	2017
16	Choline based ionic liquids and their applications in organic transformation Gadilohar, B.L., Shankarling, G.S.	Journal of Molecular Liquids	227	234-261	2017
17	An Effect of H-bonding in Synthesis of 1, 5-Diketones via Tandem Aldol- Michael Addition Reaction Using Room Temperature Ionic Liquid (RTIL). Kamble, S.S., Shankarling, G.S.	Chemistry Select	2(5)	1917-1924	2017
18	Energy efficient Pfitzinger reaction: A novel strategy using a surfactant catalyst More, P.A., Shankarling, G.S	New Journal of Chemistry	41(21)	12380-12383	2017
19	Deep Eutectic Solvent: An Efficient and Recyclable Catalyst for Synthesis of Thioethers. Pant, P.L., Shankarling, G.S.	Chemistry Select	2(25)	7645-7650	2017
20	Deep Eutectic Solvent: An Efficient Catalyst for C-O Coupling Reactions. Pant, P.L., Shankarling, G.S.	Chemistry Select	2(17)	4892-4898	2017
21	Efficient, facile metal free protocols for the bromination of commercially important deactivated aminoanthracene-9,10-diones Patil, V.V., Gayakwad, E.M., Patel, K.P.,	Tetrahedron Letters	58(26)	2608-2613	2017
	Shankarling, G.S.				
22	[Amberlyst-15 - (4Na2SO4-2H2O2- NaCl) Adduct]: Direct Access to Synthesize Acylureas via Oxidative Amidation of Aldehyde Gayakwad, E.M., Patil, V.V., Patel, K.P., Shankarling, G.S.	Chemistry Select	2(29)	9511-9515	2017

23	Amberlyst-15 catalysed oxidative esterification of aldehydes using a H2O2trapped oxidant as a terminal oxidant Gayakwad, E.M., Patil, V.V., Shankarling, G.S.	New Journal of Chemistry	41(7)	2695-2701	2017
24	pH-Responsive Interaction of Fluorogenic Antimalarial Drug Quinine with Macrocyclic Host Cucurbit[7]uril: Modulations in Photophysical and Acid- Base Properties Boraste, D.R., Chakraborty, G., Ray, A.K., Shankarling, G.S., Pal, H.	Chemistry Select	2(18)	5128-5142	2017
25	Effect of methoxy group on NLOphoric properties of fluorescent 7-arylstyryl-2- methoxyphenylimidazo [1,2-a]pyridine - Solvatochromic and computational method Jadhav, S.D., Alswaidan, I.A., Rhyman, L., Ramasami, P., Sekar, N	Journal of Molecular Structure	1173	349-365	2018
26	4-(Diethylamino) salicylaldehyde based fluorescent Salen ligand with red-shifted emission – A facile synthesis and DFT investigation Kadam, M.M.L., Patil, D., Sekar, N.	Journal of Luminescence	204	354-367	2018
27	Highly fluorescent blue-green emitting phenanthroimidazole derivatives: Detail experimental and DFT study of structural and donating group effects on fluorescence properties Kothavale, S., Bhalekar, S., Sekar, N.	Dyes and Pigments	159	209-221	2018
28	NIR emitting new N, N-diethylaniline based NLOphoric D-π-A and D-A'-π-A dyes: Photophysical properties, viscosity sensitivity and DFT studies Patil, D., Jadhav, M., Avhad, K., Gawale, Y., Sekar, N.	Journal of Luminescence	204	436-447	2018

Dyestuff Technology | Institute of Chemical Technology | 27

29	Fluorescent carbazole based pyridone dyes – Synthesis, solvatochromism, linear and nonlinear optical properties Kadam, M.L., Patil, D., Sekar, N.	Optical materials	85	308-318	2018
30	Viscosity-active D-π-A chromophores derived from benzo[b]thiophen-3(2H)- one 1,1-dioxide (BTD): Synthesis, photophysical, and NLO properties Bhagwat, A.A., Mohbiya, D.R., Avhad, K.C., Sekar, N.	Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy	203	244-257	2018
31	Carbazole based NLOphoric styryl dyes- synthesis and study of photophysical properties by solvatochromism and viscosity sensitivity Kadam, M.M.L., Patil, D., Sekar, N.	Journal of Luminescence	2	2012-2014	2018
32	Excitation energy transfer processes in BODIPY based donor-acceptor system - Synthesis, photophysics, NLO and DFT study Mallah, R., Sreenath, M.C., Chitrambalam, S., Joe, I.H., Sekar, N.	Optical Materials	84	795-806	2018
33	Fluorescent meso-benzyl curcuminoid boron complex: Synthesis, photophysics, DFT and NLO study Mallah, R.R., Mohbiya, D.R., Sreenath, M.C., (), Joe, I.H., Sekar, N.	Optical materials	84	786-794	2018
34	Electronic structure and spectral properties of indole based fluorescent styryl dyes: Comprehensive study on linear and non-linear optical properties by DFT/TDDFT method Mohbiya, D.R., Sekar, N.	Computational and Theoretical Chemistry	1139	90-101	2018
35	Influence of electron donors in fluorescent NLOphoric D-π-A derivatives with acenaphthene rotor: Photophysical, viscosity, and TD-DFT studies Mohbiya, D.R., Mallah, R.R., Sekar, N.	Journal of Photochemistry and Photobiology A: Chemistry	364	40-52	2018

26	Low cost and off signt hotors	Matariala To day	0	406 505	2010
36	Low cost and efficient hetero- anthracene based small organic hole transporting materials for solid state photoelectrochemical cells Vaghasiya, J.V., Sonigara, K.K., Patel, M.H., (), Sekar, N., Soni, S.S.	Materials Today Energy	9	496-505	2018
37	Viscosity sensitive fluorescent coumarin-carbazole chalcones and their BF2 complexes containing carboxylic acid – Synthesis and solvatochromism Rajeshirke, M., Tathe, A.B., Sekar,N	Journal of Molecular Liquids	264	358-366	2018
38	Linear correlation between DSSC efficiency, intramolecular charge transfer characteristics, and NLO properties – DFT approach Patil, D.S., Avhad, K.C., Sekar, N.	Computational and Theoretical Chemistry	1138	75-83	2018
39	Highly Stoke shifted near infrared (NIR) emitting donor-pi-acceptor chromophore: Synthesis and combined experimental and computational studies of photophysical properties Jadhav, M.M., Patil, D., Sekar, N.	Journal of Photochemistry and Photobiology A: Chemistry	363	13-22	2018
40	Azo Acid Dyes Based on 2H-Pyrido[1,2-a]Pyrimidine-2,4(3H)- Dione with Good Tinctorial Power and Wetfastness - Synthesis, Photophysical Properties, and Dyeing Studies Gawale, Y., Jadhav, A., Sekar, N	Fibers and Polymers	19(8)	1678-1686	2018
41	Enhancement of NLO Properties in OBO Fluorophores Derived from Carbazole-Coumarin Chalcones Containing Carboxylic Acid at the N-Alykl Terminal End Rajeshirke, M., Sreenath, M.C., Chitrambalam, S., Joe, I.H., Sekar, N.	Journal of Physical Chemistry C	122(26)	14313-14325	2018

	T.				
42	Spectroscopic and DFT approach for structure property relationship of red emitting rhodamine analogues: A study of linear and nonlinear optical properties Jadhav, A.G., Rhyman, L., Alswaidan, I.A., Ramasami, P., Sekar, N.	Computational and Theoretical Chemistry	1131	1-12	2018
43	Viscosity induced emission of red- emitting NLOphoric coumarin morpholine-thiazole hybrid styryl dyes as FMRs: Consolidated experimental and theoretical approach Avhad, K.C., Patil, D.S., Chitrambalam, S., (), Joe, I.H., Sekar, N.	Optical Materials	79	90-107	2018
44	Large Stokes Shifted Far-Red to NIR-Emitting D- π -A Coumarins: Combined Synthesis, Experimental, and Computational Investigation of Spectroscopic and Non-Linear Optical Properties Avhad, K.C., Patil, D.S., Gawale, Y.K., (), Joe, I.H., Sekar, N.	Chemistry Select	3(16)	4393-4405	2018
45	Red Emitting Monoazo Disperse Dyes with Phenyl(1H-benzoimidazol-5-yl) Methanone as Inbuilt Photostabilizing Unit: Synthesis, Spectroscopic, Dyeing and DFT Studies Jadhav, A.G., Shinde, S.S., Sekar, N.	Journal of Fluorescence	28(2)	639-653	2018
46	Bedford-type palladacycle-catalyzed miyaura borylation of aryl halides with tetrahydroxydiboron in water Zernickel, A., Du, W., Ghorpade, S.A., (), Sekar, N., Eppinger, J.	Journal of organic chemistry	83(4)	1842-1851	2018

		-			
47	Tuning 'Stokes Shift' and ICT Character by Varying the Donor Group in Imidazo[1,5 a]pyridines: A Combined Optical, DFT, TD-DFT and NLO Approach Mohbiya, D.R., Sekar, N.	Chemistry select	3(6)	1635-1644	2018
48	Fluorescent pyridopyrimidine fused pyranones - design, synthesis, fluorescent whitening and DFT studies Gawale, Y., Sekar, N.	Journal of Luminescence	194	248-256	2018
49	NLO properties of ester containing fluorescent carbazole based styryl dyes – Consolidated spectroscopic and DFT approach Rajeshirke, M., Sekar, N.	Optical material	76	191-209	2018
50	Auxiliary Methoxy Aided Triphenylamine and Dicyanoisophorone Based Flurophores with Viscosity and Polarity Sensitive Intramolecular Charge Transfer	Journal of Solution Chemistry	47(2)	353-372	2018
51	Phenylpyran-fused coumarin novel derivatives: combined photophysical and theoretical study on structural modification for PET-inhibited ICT emission Jadhav, A.G., Shinde, S.S., Patil, D.S., Sekar, N.	Structural Chemistry	29(1)	217-230	2018
52	Triphenylamine Derived 3-Acetyl and 3-Benzothiazolyl Bis and Tris Coumarins: Synthesis, Photophysical and DFT Assisted Hyperpolarizability Study Erande, Y., Kothavale, S., Sreenath,	Journal of Electronic Materials	47(2)	1431-1446	2018
	M.C., (), Joe, I.H., Sekar, N.				

Dyestuff Technology | Institute of Chemical Technology | 31

53	Modulation of optical properties of BODIPY fluorophore via intramolecular charge transfer Thakare, S.S., Chakraborty, G., More, A.B., (), Ray, A.K., Sekar, N.	Journal of Luminanescence	194	622-630	2018
54	Corrigendum to "Deep red emitting triphenylamine based coumarin- rhodamine hybrids with large stokes shift and viscosity sensing: Synthesis, photophysical properties and DFT studies of their spirocyclic and open forms Kothavale, S., Jadhav, A.G., Scholz, N., (), Resch-Genger, U., Sekar, N.	Dyes and Pigments	37(2017)	329-341	2018
55	Fluorescent Benzocoumarin-π-Extended Styryl Hybrids: Solvatochromism, Excess Dipole Moment, NLO Properties and DFT Study Warde, U., Sekar, N.	Journal of Fluoroscence	28(1)	293-309	2018
56	Investigating the excited state optical properties and origin of large stokes shift in Benz[c,d]indole N-Heteroarene BF2 dyes with ab initio tools Gawale, Y., Sekar, N.	Journal of Photochemistry and Photobiology B: Biology	178	472-480	2018
57	NLOphoric rigid pyrazino- phenanthroline donor-π-acceptor compounds: Investigation of structural and solvent effects on non-linear optical properties using computational methods Kothavale, S., Katariya, S., Sekar, N.	Optical Materials	75	379-389	2018
58	Structure-efficiency relationship of newly synthesized 4-substituted donor- π -acceptor coumarins for dye-sensitized solar cells Jadhav, M.M., Vaghasiya, J.V., Patil, D.S., Soni, S.S., Sekar, N.	New Journal of Chemistry	42(7)	5267-5275	2018

59	Modulation of the Photophysical	Journal of	28(1)	381-392	2018
	Properties of β -substituted BODIPY	Fluorescence			
	Dyes				
	More, A.B., Chakraborty, G., Mula, S.,				
	Ray, A.K., Sekar, N.		20(1)	2.42.250	2010
60	Excited State and Non-linear Optical Properties of NIR	Journal of Fluorescence	28(1)	243-250	2018
	Absorbing β-Thiophene-Fused	Fluorescence			
	BF2 - Azadipyrromethene Dyes—				
	Computational Investigation				
	Gawale, Y., Rhyman, L., Elzagheid, M.I.,				
	Ramasami, P., Sekar, N.				
61	Water promoted allylic nucleophilic	Green Chemistry	20(2)	425-430	2018
	substitution reactions of (: E)-1,3				
	diphenylallyl acetate				
	Ghorpade, S.A., Sawant, D.N., Makki,				
	A., Sekar, N., Eppinger, J.				
62	Aqueous protocol for allylic arylation	New Journal of	42(8)	6210-6214	2018
	of cinnamyl acetates with sodium tetraphenylborate using a Bedford-type	Chemistry			
	palladacycle catalyst				
	Ghorpade, S.A., Sawant, D.N., Renn, D.,				
	(), Sekar, N., Eppinger, J.				
63	A new class of triphenylamine-	New Journal of	42(14)	11555-11564	2018
	based novel sensitizers for DSSCs: A	Chemistry			
	comparative study of three different				
	anchoring groups				
	Patil, D., Jadhav, M., Avhad, K., (),				
	Bedja, I., Sekar, N.				
64	Triphenylamine derived coumarin	Dyes and	148	474-491	2018
	chalcones and their red emitting	Pigments			
	OBO difluoride complexes: Synthesis, photophysical and NLO property study				
	Erande, Y., Kothavale, S., Sreenath,				
	M.C., (), Joe, I.H., Sekar, N.				

	Γ	1		1	
65	NLOphoric 3,6-di(substituted quinoxalin) Carbazoles – Synthesis, Photophysical Properties and DFT Studies Telore, R.D., Jadhav, A.G., Sekar, N.	Journal of fluorescence	27(4)	1531-1540	2017
66	Carbazole-Linked Near-Infrared Aza- BODIPY Dyes as Triplet Sensitizers and Photoacoustic Contrast Agents for Deep-Tissue Imaging Gawale, Y., Adarsh, N., Kalva, S.K.,	Chemistry - A European Journal	23(27)	6570-6578	2017
67	Ramaiah, D., Sekar, N. Photostability of Coumarin Laser Dyes - a Mechanistic Study Using Global and Local Reactivity Descriptors Mishra, V.R., Sekar, N.	Journal of Fluorescence	27(3)	1101-1108	2017
68	Synthesis of Novel Thiazole Based Carbaldehyde as Potential Sensor for Fluoride Anion and their Spectroscopic Properties Tayade, R.P., Sekar, N.	Journal of Fluorescence	27(3)	1117-1128	2017
69	TD-DFT Investigation of 2,5-Bis(2- benzothiazolyl)hydroquinone and 2,5-Bis(benzo[d]thiazol-2-yl)-4- methoxyphenol Jadhav, M.M., Alswaidan, I.A., Rhyman, L., Ramasami, P., Sekar, N.	Journal of Solution Chemistry	46(5)	1005-1023	2017
70	Triphenylamine-Based Fluorescent Styryl Dyes: DFT, TD-DFT and Non- Linear Optical Property Study Katariya, S., Rhyman, L., Alswaidan, I.A., Ramasami, P., Sekar, N.	Journal of Fluorescence	27(3)	993-1007	2017
71	Substituent Modulation from ESIPT to ICT Emission in Benzoimidazolphenyl- methanones Derivatives: Synthesis, Photophysical and DFT Study Jadhav, A.G., Sekar, N.	Journal of Solution Chemistry	46(4)	777-797	2017

72	Spectroscopic DET and 7 scop	Optical Matariala	66	494-511	2017
12	Spectroscopic, DFT and Z-scan supported investigation of dicyanoisophorone based push-pull NLOphoric styryl dyes Erande, Y., Sreenath, M.C., Chitrambalam, S., Joe, I.H., Sekar, N.	Optical Materials	66	494-311	2017
73	Benzophenone based fluorophore for selective detection of Sn2 +ion: Experimental and theoretical study Jadhav, A.G., Shinde, S.S., Lanke, S.K., Sekar, N.	Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy	174	291-296	2017
74	Red emitting triphenylamine based rhodamine analogous with enhanced Stokes shift and viscosity sensitive emission Jadhav, A.G., Kothavale, S., Sekar, N.	Dyes and Pigments	138	56-67	2017
75	NLOphoric mono-azo dyes with negative solvatochromism and in-built ESIPT unit from ethyl 1,3-dihydroxy-2- naphthoate: Estimation of excited state dipole moment and pH study Warde, U., Sekar, N.	Dyes and Pigments	137	384-394	2017
76	Deep red emitting triphenylamine based coumarin-rhodamine hybrids with large Stokes shift and viscosity sensing: Synthesis, photophysical properties and DFT studies of their spirocyclic and open forms Kothavale, S., Jadhav, A.G., Sekar, N.	Dyes and Pigments	137	329-341	2017
77	Non-linear optical study of BODIPY- benzimidazole conjugate by solvatochromic, Z-scan and theoretical methods Thakare, S.S., Sreenath, M.C., Chitrambalam, S., Joe, I.H., Sekar, N.	Optical Materials	64	460-453	2017

78	Pyrrole-thiazole based push-pull chromophores: An experimental and theoretical approach to structural, spectroscopic and NLO properties of the novel styryl dyes Thorat, K.G., Sekar, N.	Journal of Photochemistry and Photobiology A: Chemistry	333	1-17	2017
79	Methoxy supported, deep red emitting mono, bis and tris triphenylamine- isophorone based styryl colorants: Synthesis, photophysical properties, ICT, TICT emission and viscosity sensitivity Kothavale, S., Sekar, N.	Dyes and pigments	136	116-130	2017
80	Coumarin-Rhodamine Hybrids – Synthesis, Photophysical Properties, NLO Properties and DFT Studies Shreykar, M.R., Sekar, N.	Chemistry Select	2(4)	1464-1478	2017
81	A New Series of Highly Fluorescent Blue-Green Emitting, Imidazole- Based ICT-ESIPT Compounds: Detail Experimental and DFT Study of Structural and Donating Group Effects on Fluorescence Properties Kothavale, S., Sekar, N	Chemistry Select	2(25)	7691-7700	2017
82	Novel Thiazole Based Styryl Dyes with Benzimidazole Unit - Synthesis, Photophysical and TD-DFT Studies Tayade, R.P., Sekar, N.	Journal of Fluorescence	27(1)	167-180	2017
83	Novel pyrazino-phenanthroline based rigid donor- π -acceptor compounds: A detail study of optical properties, acidochromism, solvatochromism and structure-property relationship Kothavale, S., Sekar, N.	Dyes and Pigments	136	31-45	2017
84	Modulating TICT to ICT characteristics of acid switchable red emitting boradiazaindacene chromophores: Perspectives from synthesis, photophysical, hyperpolarizability and TD-DFT studies	Dyes and Pigments	136	321-334	2017

85	Triphenylamine-Based Bis- and Tris- ESIPT Compounds and Their Boron Complexes: Synthesis, Photophysical Properties and DFT Study of ICT and ESIPT Emissions	ChemistrySelect	2(18)	5013-5024	2017
86	Synthesis of Aqueous Dispersible Reduced Graphene oxide by the Reduction of Graphene Oxide in Presence ofCarbonic Acid Pravin H. Wadekar, Dinesh J. Ahirrao, Rahul V. Khose,Dattatray A. Pethsangave. Neetu Jha, and Surajit Some.	Chemistry Select	3	5630 - 5638	2018
87	Graphene Oxide Promoted Oxidative Bromination of Anilines and Phenols in Water Prashant Vasantrao Ghorpade, Dattatray Appasha Pethsangave, Surajit Some, and Ganapati Subray Shankarling	J. Org. Chem.	83	7388–7397	2018
88	A Ultrasound Promoted Enantio- selective Decarboxylative Protonation of α- Aminomalonate Hemiesters by Chiral Squaramides: A Practical Approach to Both Enantiomers of α-Amino EstersSurajit Some, Han Yong Bae, Mun Jong Kim, Yong Jian Zhang and Choong Eui Song	Eur.J.Org.Chem		4562-4565	2017
89	Deep Eutectic Solvent Functionalized Graphene Composite as an Extremely High Potency Flame Retardant. Surajit Some, Dattatray A. Pethsangave, Rahul V. Khose, Pravin H. Wadekar.	ACS Appl. Mater. Interfaces	9	35319– 35324	2017
90	Novel approach towards the synthesis of carbon-based transparent highly potent flame retardant	Carbon	139	205-209	2018
91	Scope and Advances in Catalytic Propargylic Substitution Reactions Rashmi Roy and Satyajit Saha	RSC Advances	8	31129-31193	2018

Dyestuff Technology 1 Institute of Chemical Technology 1 37

92	Recent advances in the catalytic synthetic approaches of triaryl methanes Rajpratap Kshatriya, Valmik P. Jejurkar and Satyajit Saha				2018
93	Brønsted Acid Catalyzed Domino Michael Addition and Cyclocondensation Towards the Synthesis Of Functionalized 4H-Chromens And Their ADMET, Molecular Docking And Antibacterial Studies. R. Kshatriya, S. Mali, H, Choudhury and Satyajit Saha				2018
94	In memory of Prof. Venkataraman: recent advances in the synthetic methodologies of flavones Rajpratap Kshatriya, Valmik Jejurkar and Satyajit Saha	Tetrahedron	74	811-833	2018
95	Environmentally benign, highly efficient and expeditious solvent-free synthesis of trisubstituted methanes catalyzed by sulfated polyborate Valmik Jejurkar, Chetan K. Khatri, Ganesh U. Chaturbhuj and Satyajit Saha	Chemistry Select	2	11693-11696	2017

PATENTS:

No.	Inventors	Title	Country	Funding agency
1	Shankarling G.S.; Boraste	Process for preparing Cucurbituril	India	BARC
	Deepak	in high yield		
2	Shankarling G.S.; Joglekar	Synthesis of copper	India	-
	Amruta	phthalocyanine using Deep		
		Eutectic Solvent.		
3	Surajit Some and	Graphene Supported Green	India	TEQIP (INN)
	Dattatray A. Pethsangave	Approach for Highly Efficient Fire		
		Retardant		
4	Surajit Some and	Magnetic Graphene-	India	TEQIP (INN)
	Dattatray A. Pethsangave,	Carrageenan-Iron Oxide		
	Pushpito Ghosh	Composite for absorption of Oils		
		with recycle and reuse		

5	Surajit Some and Dattatray A. Pethsangave	Development of method to synthesize novel polymer based composite as an efficient flame retardant thereof	India	TEQIP- ICT
6	Surajit Some, Pravin H. Wadekar	Development of method to synthesize Aqueous Dispersible Reduced Graphene oxide.	India	TEQIP- ICT
7	Surajit Some, Rahul V. Khose and Alok Ray	Flame retardant transparent liquid based on novel functionalized Graphene Quantum Dot Provisional Patent Filled	India	BARC

BOOK CHAPTER:

No.	Author(s)	Title of the chapter	Editor	Publisher	Place	Year	Page
1.	Prof. G. S. Shankarling	Culture of Indigo in Asia	Kapila Vatsyayan	Niyogi Books	New Delhi	2014	122-134

MEMBERSHIP OF IN-HOUSE COMMITTEES:

PROF. G. S. SHANKARLING

- Member, Board of governors,SVIMS
- Department coordinator of TEQUIP
- Tequip in charge of student training programme
- Administrative Cocoordinator for Perfumery and Flavors Course.
- Placement Officer of Perfumery & Flavor Technology
- Member of Meritcum-means and Trust scholarship, ICT
- Co-Chairperson of Publication committee (Annual Report, Student diary, ICT diary, and Posters

PROF. N. SEKAR

• Co-ordinator for the Centre

for Physico-Chemical Aspects in Textiles, Fibres, Dyes and Polymers (UGC-SAP).

- Deputy Coordinator , COSIST Programme
- Departmental Representative, CAS Programme
- Coordinator, In-plant Training for T.Y. B. Tech students
- Coordinator, TEQIP Seminar (Services to Society)
- Member, Student's Feedback committee
- Member, AICTE Accreditation (of all Courses) Committee
- Member, Teachers Evaluation Committee
- Member, RC Committee Ph.D Chemistry

- Member, RC Committee, Ph.D Green Technology
- Member, RC Committee, Dyes Technology
- Seminars /Lectures / Conferences /Symposia / Workshops /Summer or Winter Training Schools attended/Oral OR Poster Presentations

DR. NABANITA SADHUKHAN

• Library Committee

INDUSTRIAL CONSULTANCY

PROF. G. S. SHANKARLING:

- Hindustan Unilever Ltd, Mumbai.
- Jyoti Laboratories, Mumbai.
- Diversey India Pvt. Ltd., Mumbai
- Enviro controls Associates, Surat.

PASSED OUT STUDENTS

PH.D. STUDENTS

Name	Course	Title	
Pravin Borse	Ph.D.	Synthesis of Novel Fluorescent Organoboron, Styryl and	
		Spiropyran Colorants And Their Applications As Chemosensor	
Saurabh	Ph.D.	Synthesis and Application of Novel Biodegradable Multi Task	
Deshpande		Specific Ionic Liquids in Organic Synthesis	
Amol jadhav	Ph.D. (Sc.)	Synthesis of High Performance Fluorescent Fused Heterocyclic Systems	
Ankush More	Ph.D. (Sc.)	Design and synthesis of efficient fluorescent dyes with enhanced photophysical properties	
Santosh Kataria	Ph.D. (Sc.)	Synthesis of fused heterocycles with high hyperpolarisability	
Shantaram Ph.D. (Sc.)		Synthesis of Fluorescent Colorants for their Biological	
Kothavale		Applications	
Shrikant thakare	Ph.D. (Sc.)	Synthesis of High Performance Fluorescent Colorants with	
		Enhanced Photo physical properties	
Yogesh Gavale	Ph.D. (Sc.)	Synthesis and photophysical properties of functional molecules	
Umesh Warde	Ph.D. (Sc.)	Synthesis of Novel High Performances Functional Colorants	
Siddheshwar	Ph.D. (Sc.)	Synthesis of fused heterocyclic fluorophores with non linear	
Jadhav		optical properties	
Sharad Patil	Ph.D. (Sc.)	Greener Routes for Heterocyclic Intermediate in synthesis of	
		Fluorescent Colorants.	
Vadagaonkar	Ph. D (Sc.)	Development of Synthetic Methodologies Leading to Functional	
Kamlesh		Colorants, Heterocycles, Ketoesters and Amides	
Shashikant			

M. TECH. STUDENTS

Name	Course	Title
Pritesh Patil	M.Tech	Green synthetic method for synthesis of anthraquinone derivatives
		and hydroxymethylation of phenol derivative
Mekonnen	M.Tech	Green Methodologies for Synthesis and Application of Dyes
Habtemichael		
Berhe		
Karishma Shah	M.Tech	Effective application of citrus peels derived peroxidase on effluent
		treatment and synthesis
Mimoh Devdas	M.Tech	Titanium based catalyst for Oxidation Of Industrial Effluent
Koli		
Surabhi Sunil	M. Tech	1, 8- Cineole Derivatives using deep eutectic solvent and
Choudhary		formulation of fragrance blends

Vaibhav Patil	M. Tech	Green synthesis and application of perfumery and
flavor compounds		
Dharit Shaha	M. Tech	Disperse Dyes containing Thiazole Unit and Acid dyes
Yeshiemebet Walle	M. Tech	Synthesis of Phthaimide Based Azo Disperse Dyes and Thiazole
		Containing Acid Dyes

RESEARCH ABSTRACT:

Research Scholar: Mr. Pravin Nimba Borase Research Supervisor : Prof.(Dr.) Ganapati Subray Shankarling Degree Awarded : Ph.D. (Science)

Thesis Title : Synthesis of novel heterocyclic colorants and supramolecular host for high-tech applications

The research work pursued describes the designed and synthesis of a novel Schiff base receptor, dihydroguinazolinone fluorophore and development of greener synthetic methodologies for the nitrile and amide derivatives. The supramolecularly assisted hostguest interactions between the chromophoric and fluoregenic organic receptors and metal ions (e.g. Al^3+ , Cr^3+ , Fe^3+ and Cu^2+) were manifested. Subsequently, the supramolecularly assisted host-guest interactions between macrocyclic host Cucurbit[7] uril and the feebly fluorescent probe will be conferred. A main objective of the studying these host-guest interactions was developed a novel cost-effective metal ion sensors. Which will be an alternative tool for existing sophisticated analytical techniques for detection of metal ions. For the synthesis of organic receptors, we have used

the environmentally friendly aspects of the green chemistry.

The Schiff base receptor showed a significant advantage of naked eye detection of micro-molar level Al³+, Cr³+ and Fe³+ ions. Along with this, we have also studied the practicability of this receptor. We have proposed a Boolean type molecular logic gate system which will explore the possibility of mimicking the INHIBIT type of logic gate at the molecular level.

Host-guest interactions between the dihydroquinazolinone (QZP) fluorophore Cu^2 + ions are studied in thoroughly. The practical applications of the sensor QZP have also been demonstrated for detection of Cu^2 + in aqueous media by using filter paper strip, TLC plate and solid silica support method. The complexation was proven by ESR and Single crystal X-ray analysis.

Along with this, we have studied the Supramolecular interaction between macrocyclic host cucurbit[7]uril and the feebly fluorescent guest was manifested using absorption, steady-state, time-resolved fluorescence and 1H NMR spectroscopic techniques and quantum chemical calculations were performed to understand the binding energy and of the complex. The effect of temperature and pH was on binding affinities of the probe were investigated.

We have also explored the biodegradable choline hydroxide as a homogeneous basic ionic liquid catalyst. The simple, metal and ligand-free protocol for the synthesis of 2,3-dihydroquinazolin-4(1H)ones derivatives using choline hvdroxide (ChOH) as an effective catalyst in an aqueous medium has been discussed in detail. We have also explored the synthetic utility of Ru-(salen)bis-aqua catalyst for the direct transformation of aldehyde to nitrile and amide derivatives in an aqueous medium. The higher turnover number signifies that the catalyst is robust in nature

Research Scholar: Mr. Saurabh Deshpande

Research Supervisor: Prof. (Dr.) Ganapati Subray Shankarling Degree Awarded: Ph.D. (Science)

Thesis Title: Synthesis of Spiropyrans, phenothiazine based functional colorants and utility of green methods for organic synthesis

Spiropyrans are dynamic robust molecules which can

undergo reversible structural isomerization from closed Spiropyran (SP) to open Merocyanine (MC) form upon irradiation with light. The structural isomerization from one form to another results in the change of colour from colorless to color with due reversibility upon irradiation of visible light or using the surrounding energy. The photoisomerisation results in the formation of two different forms which differ vastly in their properties making them to act as a photoswitch. In fact, spiropyran is far more than just a simple photoswitch; the range of stimuli able to induce its reversible isomerization is truly impressive and includes different solvents, metal ions, acids and bases, temperature, redox potential, and mechanical force, etc. This versatile input method highlights far-reaching the capabilities of new spiropyranbased dynamic materials. In one part of our project, we have designed a photoswitch attached to the boranil, a recently developed fluorophore with an intention to design a Photochrome-Fluorophore conjugate. Such conjugates are known to exhibit Fluorescence Resonance Energy Transfer (FRET) a phenomenon widely applied to reduce the diffraction barrier resulting in the increase in resolution of Fluorescence microscopy. Spiropyrans are dynamic molecules which can result in opening of ring under the influence of metal ions. This enables us to exploit one of the wide properties of SP in the application of Metal ion sensor. In our quest, we have successfully synthesized, characterized а novel SP which can detect heavy metal Pb2+ up to nanomolar concentrations. Further, we have also focused on the styryl dyes synthesis due to their numerous applications in the field of OLED's. mechanophores, photosensitizers, metal ion sensors, etc4. Here in, we have utilized in house synthesized acceptor thiazologuinoxalines and have prepared a novel styryl dye involving Phenothiazine as a donor. The excited state dynamics of these dyes were studied from the photophysical studies and the time correlated single photon counts (TCSPC). We have successfully employed phenothiazine based dye а as a chemo dosimeter for the detection of Cu2+ ions. The detection limit of these dves were found to be in micro molar levels. The chapter 1 is a review of the recent development and applications of several Spiropyranfluorophore conjugates which exhibit FRET phenomenon. Chapter 2 and 3 deals with synthesis of novel PcFRET system involving spiropyran and Boranil as fluorophore and а their photophysical properties as a FRET conjugates. Chapter 4 discusses about the design and the synthesis of novel spiropyran for metal ion sensing and DFT study of the newly synthesized molecule while Chapter 5 involves its application as a photo reversible switch for the detection of Pb2+ ions. The of Phenothiazine synthesis based dyes conjugated to strong acceptors such as thiazologuinoxalines and

benzindolino moieties and the extensive photophysical studies have been carried out in chapter 6. Chapter 7 involves application of one of the dye synthesized in the previous chapter for the selective detection of Cu2+ ions acting as a chemodosimeter. Chapter 8 deals with the synthesis and photophysical properties of Phenothiazinethiazole based dves for FMR and AIE studies. Chapter 9 includes Choline Chloride: Oxalic acid Deep Eutectic Solvent (DES) as an efficient catalyst for the selective synthesis of 2-Aryl-1arylmethyl-1H-benzimidazoles and chapter 10 involve energy efficient, clean and solvent free photochemical benzylic NBS in bromination using concentrated solar radiation (CSR)

Research Scholar: Mr Mekonnen Habtemichael Berhe Research Supervisor: Prof. (Dr.) Ganapati Subray Shankarling Degree Awarded: M.Tech

Thesis Title: Green Methodologies for Synthesis and Application of Dyes

The aim of this work was to analyse the dyeing of polyester fabric by using disperse dyes in the presence of recyclable and eco-friendly choline chloride based deep eutectic solvent (DES) as the main additives without using any dispersing levelling agents. The and result obtained shows dyeing of polyester fabric at 105°C in the presence of DES gives better color value (K/S) and

fastness value than that of the conventional dyeing method at 130°C, and the choline chloride: Urea DES was recycled five times without severe impact on its activity. This dyeing process of polyester fabric was a promising alternative for process optimization like energy, dyeing consumption, time. water chemicals, auxiliaries used and developing eco-friendly on textile processing.

Choline hydroxide ionic liquid was successfully used as fixating agents in dyeing of cotton with reactive dyes. In this work we use small amount of choline hydroxide ionic liquid in the presence of organic and inorganic salts for exhaustion, and effect of both choline hydroxide and a biodegradable organic salts like disodium citrate, tetra sodium (Ethylenediaminetetraacetic acid) was compared with that of the conventionally dyed fabric. The results shows the fabric dyed with the presence of choline hydroxide ionic liquid had a better and comparable color value (K/S) than the fabric dyed with conventional method and the washing and light fastness are relatively better. In addition the amount of the total dissolved solid and the biological oxygen demand in the dyebath are much lower than that of the conventional process. The choline hydroxide ionic liquid was reused four times from the dyebath without significant effect on K/S value and fastness properties, which have benefits in maximum conservation of water, contributes for high

reduction of effluent loads and for developing eco-friendly textile processing. This process will be one approach to develop eco-friendly process by reducing the environmental load in textile processing.

In this research work we have prepared different DES like choline chloride urea, choline chloride malonic acid, choline chloride oxalic acid, choline chloride tartaric and choline hydroxide ionic liquid. During the synthesis of anthraquinone acid dyes by Ullmann condensation I used choline hvdroxide solvents instead of DMF and other catalysts, the result shows the IL used enhance the catalytic activity of the reaction with good yield. Different bisazo dyes and monoazo disperse dyes was synthesized during my research work and their application study with DESs shows it is a promising approach to develop green textile dyeing processes. These DESs was then used to get desired product in high yield with maximum purity, in less reaction time, and for optimising the dyeing process.

Research Scholar: Mr. Pritesh S. Patil

Research Supervisor: Prof. (Dr.) Ganapati Subray Shankarling Degree Awarded: M.Tech

Thesis Title: Green synthetic method for synthesis of anthraquinone derivatives and hydroxymethylation of phenol derivative

The efficient protocol involving

naphthoquinone, 2-butenal and p-toluene sulfonic acid (PTSA) were carried out in presence of the organocatalyst L-proline in aqueous medium at reflux. The one pot synthesis protocol offers good to excellent yield of desired product. The protocol reported here is benign to the environment as water is used as the solvent. The organocatalyzed benz-annulation in water was applied successfully for the synthesis of various anthraquinones derivatives. The one pot synthetic protocol hydroxymethylation of of phenol derivatives offers good to excellent yield of desired product. The simple, green and commercially viable protocol involves substituted phenols, formaldehvde in choline hydroxide were successfully carried out choline in hydroxide at 80°C. The protocol mentioned here is benign to the environment as choline hydroxide used as solvent as well as catalyst.

Research Scholar: Miss. Karishma Shah Research Supervisor: Prof. (Dr.) Ganapati Subray Shankarling Degree Awarded: M.Tech

Thesis Title: Effective application of citrus peels derived peroxidase on effluent treatment and synthesis

The present study aims to investigate the application of peroxidase enzyme extracted from citrus limon peels using ultrasound for synthesis and effluent treatment. The goal was to optimize the ultrasoundassisted extraction time to achieve maximum recoverv of peroxidase from citrus peel with the most desirable enzyme specific activity and stability. The application of extracted enzyme for effluent treatment was screened using OFAT methodology. The maximum decolorization of 10 mg/L Rhodamine B color was accomplished at 44.66 U/ mL of catalyst. Treatment of Industrial effluent accomplished tremendous COD reduction bv enzvmatic treatment individually. Combination of existing methods with enzymatic method proved to be efficient in reducing COD of CETP within permissible effluent limits. Peroxidase is an efficient catalyst used in oxidation of o-phenylenediamine in presence of hydrogen peroxide that yield 70.10 % of 2, 3diaminophenazine. The structure synthesized of compound 2. 3-diaminophenazine was affirmed by FTIR spectroscopy

Research Scholar: Mimoh Devdas Koli Research Supervisor: Prof. (Dr.) Ganapati Subray Shankarling Degree Awarded: M.Tech Thesis Title: Titanium based catalyst for Oxidation Of Industrial Effluent

Present study demonstrates effective a plication of titanium dioxide on effluent treatment from different source. The influence of various parameters, such as catalyst loading, pH and time on the degradation process was examined. 96.87% COD reduction of Industrial effluent and 72% COD reduction for styryl dye effluent was achieved under optimized condition. Titanium superoxide catalyst was successfully prepared, and applied for dye degradation. Complete decolorization of Acid Orange 7 was obtained under optimized conditions. Titanium superoxide catalyst was effective for four consecutive cycles. Application titanium superoxide on of CETP effluent were also carried out in combination with other methods in order to examine the effectiveness of the method to a more complex waste.

Research Scholar: Miss. Surabhi Sunil Choudhary Research Supervisor: Prof. (Dr.) Ganapati Subray Shankarling Degree Awarded: M.Tech

Thesis Title:1, 8- Cineole Derivatives using deep eutectic solvent and formulation of fragrance blends

1, 8- Cineole is the main component present volatile in the essential oil extracted eucalyptus from the plant responsible and is for imparting eucalyptus oil with its characteristic aroma and flavour. The present study involves synthesis of various chemical compounds from 1, 8- Cineole using Deep Eutectic Solvent. The Deep Eutectic Solvent was prepared from choline chloride and malonic chromatographyacid. Gas mass spectrometry technique was used to analyse the products and three of the products were identified as *a*-Terpineol, Limonene and *a*-Terpinene. The present research project also studies one of the most important aspects in the Perfumery industry that is, Formulation of Fragrance Blends. 10 fragrance blends were formulated and were studied for their shelf life. sensory evaluation, retentivity and microbial analysis among others. The fragrances were also subjected to application studies and were incorporated in consumer goods like fine fragrances, incense sticks and hair tonics. A case study regarding the costing of a fragrance blend was also completed.

Research Scholar: Mr. Vaibhav B. Patil

Research Supervisor: Prof. (Dr.) Ganapati Subray Shankarling

Degree Awarded: M.Tech

Thesis Title: Green synthesis and application of perfumery and flavor compounds

The objective of this work is to synthesize perfumery and flavor compounds employing green and synthetic route and study their activity and efficacy. In current era, green reaction medium for organic synthesis is highly demanding. Choline hydroxide a new deep eutectic solvent obtained by reaction of choline chloride and potassium hydroxide has several advantages in terms of availability, low price, biodegradability and environmentally benign features. We have developed a simple, green and efficient catalytic system using choline hydroxide mixtures for rapid

synthesis of perfumery and compounds. flavour The reaction is carried out using 100% choline hydroxide which acts as solvent as well as catalyst. All the reactions carried at room temperature except one reaction of hexvl cinnamaldehvde which was carried out at reflux temperature. Following this protocol, 9 aroma compounds synthesized were and characterized using GC,GCMS, FTIR and NMR. The reaction good conversion gave of reactants and synthesized compounds have good olfactive properties that can be used for fragrance formulation. The reaction showed a marked improvement over reported method by NaOH. Good yields were obtained in the range of 70-85%. To the best of our knowledge, this is the report of a catalyst that can effectively catalyze these two important C-C bond formation reactions. In addition the choline hydroxide catalyst could be easily recycled and reused for at least three runs without any considerable loss in yields. Olfactive properties of these compounds have been checked. Out of them cinnamaldehyde derivatives found spicy kind of odourprofile and raspberry ketone derivatives found fruity and spicy kind ofodour profile. Out of this few were used in candle fragrance formulation.

Research Scholar: Mr. Amol jadhav Research Supervisor: Prof. N.Sekar Degree Awarded: Ph.D. (Science)

Thesis Title: Synthesis and functional applications of Benzophenone and Xanthene based derivatives

Benzophenone and xanthene based dyes are considered to be important class of colorants. Both benzophenone and xanthene units are symmetrical functional isomers having molecular formula C13H10O. So, even one alternation on either side of the moiety provide positions with different electron density to alter the photophysical properties giving an array of different functional compounds. Such versatility of both benzophenone and xanthene units make them applicable in wide variety of areas such as photoinitiators, photosensitizers, UV-stabilizers, oxidants in Photoinduced Eletron Transfer (PET), biological probes, fluorescent chemosensors, Organic Light (OLED), Emitting Diods Thermally Activated Delaved Fluorescence (TADF) and phosphorescnece. In spite of having high quantum yields and high molar extinction coefficients of reported Xanthene based (Rhodamines) and coumarin dyes, they have very small Stokes shift. Similarly, reported benzophenone based dyes are having good Stokes shift but low quantum yields. Therefore synthesis of new benzophenone and xanthene derivatives and their functional applications is of great interest. So, we have tried to achieve better quantum yields in benzophenone based dyes by means of incorporating good donors and stabilizing groups

to make them highly fluorescent for functional applications. We have also synthesized analogues of Rhodamines dyes and coumarin derivatives having very good Stokes shifts.

Research Scholar: Mr. Ankush More

Research Supervisor: Prof. N.Sekar Degree Awarded: Ph.D. (Science)

Thesis Title: BODIPY dyes-Synthesis, Photophysical properties and DFT studies.

This research thesis provides insight into the chemistry of the BODIPY family and OBO complexes of the fluorophores. It describes the synthetic methods undertaken to attempt various structural modifications of the core BODIPY framework.

The work describes an efficient and chemoselective protocol to substitute the F atoms of BF2-BODIPYs the to the corresponding Et2B-BODIPYs and regeneration of the BF2-BODIPYs again from the Et2B-BODIPYs with high yield. Subsequently we have presented substituted synthesize of BODIPY dyes and the effect of substituent on the photophysical properties of the fluorophore. It was hypothesized that linking the acetyl acetone moiety at the beta position of the BODIPY core would extend electronic conjugation to influence its fluorescence significantly. Such dye can be used as an "ON-OFF" fluorescent sensor of the Cu2+ ions due to formation of a stable non-fluorescent Cu2+-complex. Also, the resultant nonfluorescent Cu2+: BODIPY-acac complex may be attractive in detecting some toxic anions (S2-) by the displacement approach.

Further we have presented an effective synthesis of efficient pyrene based NLO chromophores- A) To study the photophysical properties of newly synthesized chromophores construct to the solvatochromism based polarity function plots to establish the charge transfer characteristics, (CT)B) utilization of the different CT characteristic parameters to evaluate the solvatochromic nonlinear optical properties of donor pi acceptor (D-pi-A) chromophores and C) to support the solvatochromic NLO properties by DFT analysis using computational approach

Research Scholar: Mr. Santosh kataria

Research	Supervisor:	Prof.
N.Sekar		
Degree	Awarded:	Ph.D.
(Science)		

Thesis Title: DFT Studies On Fluorophores With ESIPT And Large Hyperpolarisabilities

Donor acceptor chromophores have emerged as important materials for organic electronics due to their invariably high nonlinear optical (NLO) response. They have several advantages over inorganic NLO Assessing materials. the NLOphoric properties of donor -acceptor or push-pull chromophores involve a heavy investment in experimental set up.

Density Functional Theory (DFT) deals a good accuracy and computational cost ratio among various methods used to predict the electronic structure molecules of of practical interest. The triphenylamine, and extensively unique accepted donating group for its better electron donating ability. The charge transfer characteristic has been used in opto-electronic applications. Different triphenylamine based dyes are selected and their detail photophysical properties, intramolecular charge transfer characteristics and linear as well as nonlinear optical properties different solvents in are studied. Three different types of triphenvlamine based dves studied with varied acceptors by estimating HOMO-LUMO energy gap and they were extensively studied for their linear as well as non-linear behavior.

Comparative study of nonlinear optical properties of red emitting has been coumarins done with DFT using global hybrid range-separated (GH) and hybrid functionals (RSH) and with correlated the spectroscopic values. The GHs - BHHLYP, PBE0, M06, M06L, M062X, and M06HF and RSHs CAM-B3LYP, HISSbPBE, HSEH1PBE, wB97, wB97X, and wB97XD in combination with 6-311+G(d,p) basis set have been tested. Estimated polarizability (aCT), first order hyperpolarizability $(\beta 0)$ and second order hyperpolarizability (γ) from the RSHs were closer to the values compared to GHs. However extensive benchmarking of computational strategies is needed before the design strategies are finalized.

The photo-physical behavior of 5, 6-dichloro-1, 3-bis (2-pyridylimino)-4, 7-dihydroxyisoindole was studied using the density functional theory (DFT) and time-dependent densitv functional theory (TD-DFT). The functional used was B3LYP and 6-31G (d) was the basis set for all the atoms. All the ten tautomers were studied for the absorption and emission properties. It was found that the tautomer where hydroxyl groups are syn to the nitrogen of isoindoline ring is most stable and thus, responsible for the ESIPT process.

Research Scholar: Mr. Shantaram Kothavale Research Supervisor Prof.N.Sekar Degree Awarded: Ph.D. (Science) Thesis Title: Donor-Acceptor and ESIPT based fluorescent

colorants: Synthesis, photophysical and DFT computational studies

Donor-acceptor compounds with extended π -conjugation have been used to reduce the HOMO-LUMO energy gap and are extensively studied for their linear as well as nonbehaviour. linear Different phenanthroline supported donor-π-acceptor pyrazine decorated with compounds, naphthalene, acenaphthene and phenanthrene core are synthesized and studied for their highly solvatochromic as well as acidochromic behaviour. Depending on the length of conjugation and availability of different positions for protonation positive as well as negative acidochromism is observed.

Fluorescent molecular rotors (FRMs) are microenvironmental sensitive molecules and are applicable as sensors to sense slight fluctuation in pH, viscosity, polarity, voltage and presence specific analytes. of NIR fluorescent probes are attractive biological for applications because of minimum photo damage to biological samples, deep tissue penetration, and minimum interference from the background auto fluorescence. Triphenvlamine based coumarin-rhodamine fused hybrid dyes are synthesized and studied for their improved photophysical properties as well as viscosity sensitivity.

Triphenylamine, а unique and widely accepted donating group for its very good electron donating ability and charge transfer characteristic has been used in obtaining dyes for opto-electronic applications. Different methoxy supported triphenylamine styryl dyes are synthesized and their detail photophysical properties, intramolecular and twisted intramolecular charge transfer characteristics different in solvents are studied. Different and bis tris-substituted triphenvlamine based rhodamine as well as coumarinrhodamine derivatives are successfully synthesized, characterized and studied for their improved photophysical properties and increased Stokes shift as compared to the reported rhodamine dyes.

Excited state intramolecular proton transfer (ESIPT) compounds are applied as UV photo stabilizers, proton transfer lasers, photo switches or fluorescent probes. Specifically Hydroxyl-substituted tetraphenyl imidazole (HPI) have been successfully employed as laser dye, organic light emitting materials including white light and as emission colour tuning material. Effect of different donating groups on HPI as well as phenanthrene core was studied and found to show combined effect of intramolecular charge transfer (ICT) with ESIPT to exhibit interesting photophysical results.

Research Scholar: Mr. Shrikant thakare Research Supervisor Prof.N.Sekar Degree Awarded: Ph.D. (Science)

Thesis Title: Design and Synthesis of Novel BODIPY Fluorophores, Photophysical Properties and DFT Studies Abstract

BODIPY (4,4-difluoro-4bora-3a,4a-diaza-s-indacene) dyes constitute a fascinating topic of research in the area of fluorescence colorants due to its huge and variety of application. BODIPY dyes are attractive due to their excellent

photo-physical properties and potential for fluorescence-based sensing and bio-imaging and optoelectronics applications. Indeed, one can find a huge library of compounds based on the BODIPY framework. The versatility of this fluorophore lies in its tunable spectroscopic properties with high molar absorptivity (up to 80000 M-1) in the visible and NIR region which gives intense absorption bands and high fluorescence quantum yields due to the rigidity of the core and low intersystem crossing (ISC) and internal conversion (IC) rates. The rigidity of the core due to BF2 moiety which allows pielectron delocalization that makes it a pseudo-aromatic compound which provides the thermal and photochemical stability to this fluorophore. Researchers have extensively explored this fluorophore by modifying at α , β , meso and also the boron centre to improve its applicability along with the stability. These dyes can easily be tuned at a desired wavelength by altering the HOMO-LUMO band gap with appropriate core substitution. BODIPY dve shows less stokes shift due to minimum charge separation over the molecular structure, which sometimes makes this dye less useful due to selfreabsorption process. So, the choice of the proper donating group which gives large charge separation over the molecule is of great importance to produce highly stokes shifted red emission. Based on this strategy BODIPY dyes are well explored

for their applications in metal

sensors, pH sensors, molecular rotors, biomolecule labelling and fluorescence imaging. The main objective of the present research work is to synthesis and to study the photophysics of the BODIPY dyes in terms of their excited state charge transfer processes with steady state and time-resolved spectroscopic techniques along with quantum chemical calculations to support the hypothesis.

Research Scholar: Mr. Yogesh Gavale Research Supervisor: Prof.

N.Sekar Degree Awarded: Ph.D. (Science)

Thesis Title: NIR absorbing aza-BODIPY dyes and dyes based on 2H-pyrido[1,2-a] pyrimidine-2,4(3H)dione- Synthesis, functional applications and DFT studies

Aza-BODIPY is a versatile fluorophore due to its spectral tunability with high molar absorptivity in the NIR Region. The fluorescence quantum yields of these dye are low due to the higher intersystem crossing (ISC) and non-radiative decay (Knr) rates. These chromophores have good solubility in an organic medium. The rigidity of the core due to BF2 moiety which allows pi-electron delocalization providing required photostability. These fluorophores have extensively been explored by modifying the core and peripheral positions. These dyes can easily be tuned at a desired wavelength by altering the HOMO-LUMO band gap with

appropriate core substitution. Like BODIPY the aza-BODIPY dyes show less Stokes shift due to minimum charge separation over the molecular structure, which sometimes makes this dye less useful in the biology due to selfreabsorption

process. So the choice of the proper donating group at peripheral position and functional group at

gives core position which large charge separation over the molecule and enhance the intersystem crossing rate is of great importance to produce large Stokes shifted red emission and high triplet quantum vield. Based on this strategy the aza-BODIPY dyes are well explored for their applications as triplet photosensitizers for photodynamic therapy and photoacoustic contrast agent for photothermal therapy. The main objective of the present research work is to investigate the efficiency of singlet oxygen generation of triplet sensitizer aza-BODIPY derivatives using DPBF trap degradation experiment, determination of triplet quantum yield using Nano Second Laser Flash Photolysis, and it's in vitro application with chicken tissues along with quantum mechanical calculations to support the hypothesis. 2H-pyrido[1,2-a] pyrimidine-2,4(3H)-dione is one of the important N-heterocycles that has a privileged positions in drug discovery. In particular, research interest in utilizing pyridopyrimidine motif as an important intermediate has

rapidly grown due to their biological and biomedical applications particularly antibacterial. antimicrobial. anti-allergic. tvrosine kinase, antitumor. anticonvulsant. and antifolate. Due to the free nucleophilic site available on 2H-pyrido[1,2-a]pyrimidine-2,4(3H)-dione, it is available for the synthesis of azo dyes which involves diazotized aromatic amine sulphonic and carboxylic acids as electrophile. Hence the

series of azo acid dyes have been prepared using reaction between 2H-pyrido[1,2-a] pyrimidine-2,4(3H)-dione as coupler and diazotized aromatic amine sulphonic and carboxylic acids as diazo component. Synthesized dyes were characterized by spectroscopic techniques. These azo acid dyes were applied on various textile substrates whereupon their fastness properties, color assessment were evaluated. 2H-pyrido[1,2-a]pyrimidine-2,4(3H)-dione can undergo Pechmann condensation to vield fluorescent 4- methyl-2H,5H-pyrano derivatives of 2H-pyrido[1,2-a]pyrimidine-2,4(3H)-dione. These dves have absorption and emission respectively in the range of 350-370 nm and 400-425 nm suggesting their potential application as fluorescent whitening agents. Due to the specific absorption and emission properties, these dyes were applied to polyester fabric and their performance was evaluated by means of measuring the degree of whiteness, the degree of brightness, and color values in comparison with a commercially available fluorescent whitening agent, Hostalux ESR.

Research Scholar: Mr. Umesh Warde Research Supervisor: Prof. N.Sekar Degree Awarded: Ph.D.

(Science)

Thesis Title: Naphthalene based functional colorants: Synthesis, Photophysical and DFT Studies

Functional colorants are the inorganic or organic compounds which have functional applications. Among those. organic compounds have intrinsic photochemical and photo-physical properties. Organic functional colorants are divided into two parts. First is fluorescent colorants and other is non-fluorescent colorants. fluorescent colorants Non contains compounds which are themselves are colored and shows visible colors on substrates such as fabrics, papers and metals. The fluorescent compounds show colors on emission in the specific region of electromagnetic radiation. These compounds show enhanced fluorescence emission (high quantum yield or large Stokes shifted fluorescence or both) regarding phenomenon's various and hence are of prime importance technological in many applications such as sensitizers, information storage (compact optical disc technology), optoelectronics brighteners, as OLED, LASER, Solar cells and as a fluorescent probes for

many biological species (ions, radicals biomolecules etc.) and also in modern medicine (photodynamic cancer therapy).1,2

But still the practical applications are limited. These applications need molecular and protocol simplicity. They require compounds of good photostability, thermal stability, high quantum yield and large Stokes shift. To guire all these qualities in a single compound is a difficult task. But as science doesn't stop and wants to continuously grow, synthesis and study of novel fluorescent compounds become very important.

Among the various concepts studied photophysical for properties of the functional colorants, the Excited state intramolecular proton transfer (ESIPT) and the intramolecular charge transfer (CT) have gained scientific interests since last 50-60 years.3,4 The ESIPT molecules have two major advantages. First is high light stability and second is large Stokes shifted emission. This dynamic property gave the ESIPT molecules the place in the functional colorants category.5,6 The charge transfer compounds are the compounds where there is a flow of electrons from electron rich centre to electron deficient centre. This implies the stabilization of excited state before the compound emit the light. This stabilization differs according to the environment (solid or solution). In solution, charge transfer makes molecule to show solvatochromism. This solvatochromism and dependence of charge transfer in changing environment made charge transfer molecules the topic of research for highly functional applications such as OLED, non-linear optical properties etc.7, 8

In the present work we studied the ESIPT phenomenon and charge transfer phenomenon of some novel molecules based on single scaffold. This is the reason, we chosen the Naphthalene core. Naphthalene is quite a stable molecule compared to Benzene which has low stability. It has double resonance energy (61 kcal/mol) than the benzene (36 kcal/mol). Naphthalene is versatile for the different substituents. It has the extra positions to allow many useful modifications in the molecules compared to benzene. In case of naphthalene not all the bonds are equal unlike benzene. This suggests the different charge distribution in the molecules which can make the molecule to behave differently having same functionality on different positions.9

Considering all these points we have developed the three novel molecules based on ESIPT concept. We have studied the ESIPT dynamics of these molecules and their improved emission profiles in aggregate state and viscous state. We have studied their molecular structures with help of density functional theory and their vertical excitation properties. Five novel azo compounds having negative solvatochromism and improved

light and washing fastness were developed and studied. Three novel coumarin molecules based on charge transfer concept having naphthalene core (benzocoumarins) were developed for their study in nonlinear optical properties. Finally the four charge transfer benzocoumarin-stvrvl hybrid compounds were also developed. Their photophysical properties deeply investigated and also compared with the computational results using DFT and TD-DFT methods.

To serve as a strong backbone for our study we have provided reviews for every chapter in this work.

THE DEPARTMENT IS EQUIPPED WITH A FUNCTIONAL ORGANIC SYNTHESIS LABORATORY. FACILITIES INCLUDE:

Autoclaves, Hastelloy - 300 mL, 1 lit

- Autoclaves, SS 316 3 x 600 mL, 5 lit
- Pressure reactor
- Glass assemblies
- Iulabo
- Lyophilizer / Freeze • dryer
- Ice-Machine
- Oven
- Microwave reactors
- Parr hydrogenators 300 mL, 600 mL
- Rotary evaporators
- High vacuum pump
- Chemical Vapor Deposition
- Centrifuge Machine
- Ultra Sonicator

THE FOLLOWING ANALYTICAL INSTRUMENTS ARE AVAILABLE:

- Gas Chromatography (GC)
 - HPLC
- FTIR

- UV-Visible Spectrophotometer
- Spectrofluorimetry
- Particle size analyzer •
- Simultaneous DSC TGA i.e. Thermo gravimetric analyzer
- 500 MHz NMR (Sanctioned under Prime Minister's Project).
- Cyclic Voltammetry

THE PIGMENT HOUSE IS EQUIPPED WITH:

- Analytical mill and homogenizer
- Automatic draw down assembly
- Automatic pigment Mueller
- Automatic vibroshaker .
- Ball mill •
- Kneader
- Mars mill
- Planetary ball mill •
- Sand mill

LABORATORY PHOTOS

with Auto-sampler

Rotary Evaporator

DSC-TGA Instrument

HPLC instrument

Preparative Smart Flash EPCLC AL-5805 HPLC

50 1 Institute of Chemical Technology I Annual Report 2017-18

Lyophiliser

RESEARCH GROUP

DR. G. S. SHANKARLING RESEARCH GROUP

From Left to Right: Ankur Chaturvedi, Sushil Chaudhary, Mahesh Jachak, Khushbu Patel, Sushil Khopkar, Viral Mehta, Deepak Boraste, Prof.G.S. Shankarling, Sujit Kamble, Amruta Joglekar, Jyoti Rathi, Priyanka More, Yogesh Patil.

PROFESSOR N. SEKAR RESEARCH GROUP

First Row Left to Right– Puja Gupta, Vandana Shukla, Prof. N. Sekar, Supriya Ramugade, Zeba Khan **Second Row Left to Right**– Virendra Mishra , Sagar Yadav, Chaitannya Ghanavatkar, Sumeet Sonvane, Nitesh Ayare, Suryapratap Sharma

PROF. P. M. BHATE RESEARCH GROUP

(L-R)First Row: Nazim Ahmad, Sunil Rokade (Degree Awarded),
Pratik Hande (M.Tech. Completed)
(L-R)Second Row: Kamlesh Vadagaonkar, Hanuman Kalmode (Degree Awarded),
Professor P. M. Bhate, Vijilata Rajkumari, Ashok Garande

DR. SURAJIT SOME RESEARCH GROUP

First Row (from left to right): Mahesh Bondarde, Dattatray Pethsangave, Dr. Surajit Some, Rini Jain, Madhuri Bhakare **Second Row (from left to right):** Pratik Dhumal, Dnyaneshwar Kulal, Rahul Khose, Pravin Wadekar

DR. SATYAJIT SAHA RESEARCH GROUP

Left: Mr. Valmik Pandurang Jejurkar (Ph.D student) Centre: Dr. Satyajit Saha, Right: Dr. Rajpratap Kshatriya (Research Associate)

DR. NABANITA RESEARCH GROUP

From left: Mr. Chinmay Thakkar (Project Assistant), Dr Nabanita Sadhukhan (Mentor), Ms. Criss Dcosta (JRF), Ms. Tanvi Gupta (Ph. D.)